python之requests爬虫Boss数据

本文介绍如何使用Python的requests库爬取Boss直聘上的岗位名称、薪资和地点信息。通过设置headers和cookie来降低被识别为爬虫的概率,并提供了完整的代码示例。注意,由于cookie实时更新,需要确保cookie的有效性。
摘要由CSDN通过智能技术生成

python之requests爬虫Boss数据


需要用到的库:reqeusts、lxml
没有的可以用直接下载

pip install requests 
pip install lxm

这里以python岗位,地点北京为例
在这里插入图片描述爬取的数据就是岗位名称、薪资、地点

首先导入需要用到的模块

import requests
from lxml import etree

岗位可以通过input提前输入好,传参给url

 job = input('输入职位')

将需要访问的url赋给一个变量

url = 'https://www.zhipin.com/job_detail/?query=%s&city=101010100&industry=&position='%job

query=%s(%s是一个占位)在引号后面的%job就是占的值

访问这个页面需要加一个头部(headers)降低被识别爬虫的概率
在这里插入图片描述在当前页面按f12点击Network,如果没有东西的话可以刷新一下页面
这里只用到两个参数,一个user-agent,一个cookie
在这里插入图片描述

headers = {
   
'user-agent': 'Mozilla/5.
Python爬虫用于抓取和解析网站数据,包括Boss直聘这样的职业招聘网站。在抓取Boss直聘数据时,通常会使用到一些库,如`requests`用于发送HTTP请求,`BeautifulSoup`或`lxml`用于解析HTML内容,以及可能的`selenium`来处理动态加载的内容。 以下是一个简单的Python爬虫示例,使用`requests`和`BeautifulSoup`来抓取Boss直聘职位信息的基本步骤: ```python import requests from bs4 import BeautifulSoup # 设置URL url = "https://www.zhipin.com/jobs?" # 需要根据实际搜索关键词添加查询参数 # 发送GET请求 response = requests.get(url) # 检查请求是否成功 if response.status_code == 200: # 解析HTML soup = BeautifulSoup(response.text, 'lxml') # 找到职位列表 job_list = soup.find_all('div', class_='job-item') # 需要根据页面结构调整class名 for job in job_list: # 提取信息(例如标题、公司、地点等) title = job.find('h3', class_='title').text company = job.find('p', class_='company').text location = job.find('span', class_='location').text # 打印或保存数据 print(f"职位:{title}\n公司:{company}\n地点:{location}\n") else: print("请求失败") # 如果网站有反爬机制,可能需要处理cookies、headers,甚至模拟用户行为 ``` 请注意,实际的代码可能需要根据网站的结构变化进行调整,并遵守网站的robots.txt规则以及服务条款,尊重数据来源。此外,频繁的爬取可能会导致IP被封禁,所以最好设置合理的爬取间隔。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值