奇异分解(SVD)

奇异分解

    假设C是m×n矩阵,U是m×m矩阵,其中U的列为 的正交特征向量,V为n×n矩阵,其中V的列为 的正交特征向量,再假设r为C矩阵的秩,则存在奇异值分解:

         

    其中的特征值相同,为 ,且 是m

×n的矩阵, 。令 ,则 称为矩阵C的奇异值。

         

         

    所以有了矩阵C,可以求得或者,从求得方阵或者的特征值,利用这些特征值得到,从而求得,求得的时候已经求得U或者V。

例题:

,求A的奇异值分解。

解:

时,特征向量为

标准化后 ,令

同理,先求 ,再求U。

时,特征向量

由此可知,,a是一个常数,然后单位化 便得到

所以

最后得

---------------------------------------------------------------------------------

特征值分解——EVD

    在这里,选择一种特殊的矩阵——对称阵(酉空间中叫hermite矩阵即厄米阵)。对称阵有一个很优美的性质:它总能相似对角化,对称阵不同特征值对应的特征向量两两正交。一个矩阵能相似对角化即说明其特征子空间即为其列空间,若不能对角化则其特征子空间为列空间的子空间。现在假设存在 的满秩对称矩阵A,它有m个不同的特征值,设特征值为 ,对应的特征向量为 ,则有:

U为的列是两两正交向量,所以它的逆矩阵等于转置矩阵。

奇异值分解——SVD

    假设存在一个 矩阵A,A矩阵将n维空间中的向量映射到k 为空间中, 。目标:在n维空间中找一组正交基,使得经过A变换后还是正交的。

    假设这组标准正交基为: ,则A矩阵将这组基映射为 ,如果要使他们两两正交,即有以下关系

根据假设,也有以下关系:

所以如果选择v为 的特征向量的话,由于是对称阵,v之间两两正交,那么

这样就找到了正交基使其映射后还是正交基了,现在,将映射后的正交基单位化:

所以

单位化:

由此得到关系:

从而得到

是A的满秩分解。

 

Reference

http://blog.csdn.net/zhongkejingwang/article/details/43053513

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值