- 博客(22)
- 资源 (4)
- 收藏
- 关注
原创 celery+redis异步处理时,tasks.py里self参数设置的说明
带self的写法bind=True):适用于需要在任务执行过程中不断更新状态、报告进度、或者访问任务ID等元数据的场景。不带self的写法bind=False):适用于简单的任务,只需要执行逻辑,不需要与任务元数据交互。选择哪种写法取决于任务的复杂性和需求。如果需要更复杂的控制和反馈机制,建议使用bind=True的写法。如果只是执行一个简单的任务,那么默认的bind=False会更合适。
2024-08-30 18:02:30 320
原创 决定系数R²的作用
R²通常称为**决定系数**(Coefficient of Determination),是衡量回归模型对数据拟合优度的重要指标。- R² < 0:模型对数据的解释力甚至不如简单地用平均值来预测,也就是说模型效果很差。- R² = 0:模型无法解释数据中的变化,预测值只是简单地等于实际值的平均值。- R² = 1:模型能完美解释数据中的变化,所有的预测值都完全等于实际值。**总结**:R²越接近1,说明模型对数据的解释能力越强,拟合效果越好。- \( \hat{y}_i \) 是模型的预测值,
2024-08-27 11:42:20 263
原创 AI和统计学常用指标
**例子**: 数据 `[2, 4, 4, 4, 5, 5, 7, 9]` 的标准差为 `2`。- **例子**: 数据 `[1, 3, 5, 7, 9]` 的四分位差为 `7 - 3 = 4`。- **例子**: 数据 `[2, 4, 4, 4, 5, 5, 7, 9]` 的方差为 `4`。- **例子**: 数据 `[3, 5, 7, 2, 8]` 的范围是 `8 - 2 = 6`。- **例子**: 如果数据是 `[1, 2, 2, 3, 4]`,众数是 `2`。高峰度表示数据集中在均值附近。
2024-08-25 18:21:14 258
原创 计算R²(决定系数)的不同方法
**计算方式**: 当你使用 `r2_score(y_test, y_pred)` 时,你需要手动提供真实值 `y_test` 和预测值 `y_pred`,然后函数会计算 R² 值。对于其他模型(如 SVR),使用 `r2_score()` 更加灵活,因为它可以在任意情况下计算 R²。- **使用场景**: `r2_score(y_true, y_pred)` 是 `sklearn.metrics` 提供的一个独立函数,用于计算 R²,适用于所有回归模型,包括非线性模型如 SVR(支持向量机回归)。
2024-08-25 00:09:29 362
原创 支持向量机回归(SVR)主要用来干嘛?
**对噪声的抵抗能力**: SVR 可以通过调整参数 \( \epsilon \)(epsilon-insensitive loss)来控制对噪声的敏感度,这使得它在处理带有噪声的数据时能够保持较好的泛化能力。- **小样本问题的适应性**: 在样本数量较少但特征维度较高的情况下,SVR 由于其独特的优化机制,可以在有限的数据中提取有效信息并构建强大的预测模型。- **专注于非线性建模**: SVR 在建模非线性关系时表现突出,特别是在高维、小样本的情况下,它能有效地避免过拟合,提供稳健的预测。
2024-08-24 23:28:56 408
原创 多项式回归分析中,如何生成指定的多项式特征值
在多项式回归分析中,默认情况下,`PolynomialFeatures` 会生成所有可能的多项式特征,包括所有的交互项,这可能导致特征空间过大,尤其是当你有较多原始特征时。如果你只需要特定的特征,比如仅每个原始特征的平方项而不需要交互项,可以手动生成这些特征,而不使用 `PolynomialFeatures` 的默认行为。假如多项式回归分析的阶数是2,也就是2次方,原始特征值是5个,那么按照规则,这5个特征将被扩展为20个新特征值:5个原始特征,5个二次方,10个两两特征值相乘。
2024-08-24 11:01:09 687
原创 传统的线性回归、Ridge 回归和 Lasso 回归
**不同点**:Ridge 和 Lasso 回归通过引入正则化项来控制模型复杂度,防止过拟合。- **Ridge 回归**:适用于特征较多且存在多重共线性的场景,但不需要特征选择。- **相同点**:三者都是基于线性模型的回归方法,目标都是拟合数据,最小化预测误差。- 正则化项的引入有助于缩小系数的大小,从而减少模型的复杂性,降低过拟合的风险。- **线性回归**:适用于数据特征之间相关性较小且不考虑模型复杂度的场景。- **Lasso 回归**:适用于特征较多且希望自动选择重要特征的场景。
2024-08-23 10:49:11 430
原创 RNN会记住过去多少个时间步的特征数据?
隐藏状态的维度(即隐藏单元数)越大,理论上能够存储的信息越多,但这并不直接决定RNN能够记住多少个时间步的信息。RNN的“记忆”能力并不是通过固定的时间步数来决定的,而是通过其网络结构、隐藏状态的维度、以及训练过程中学到的权重来影响的。- **长期依赖**: RNN在记住远距离时间步的信息时会遇到困难,尤其是当时间步的跨度很大时。- 如果输入数据有很强的短期依赖性(即当前时间步主要依赖于最近的几个时间步),RNN往往能记住这些短期信息并做出较好的预测。然而,这也会增加模型的复杂性和训练的难度。
2024-08-22 11:36:19 292
原创 什么是RNN的隐藏状态
通过线性变换和激活函数,RNN将当前时间步的输入和之前时间步的隐藏状态结合,生成新的隐藏状态。3. **隐藏状态的含义**: 计算得到的隐藏状态`h_1`是一个50维向量,包含了当前时间步输入(1,1,1,1)和初始隐藏状态的信息。例如,在时间步2中,RNN会使用时间步1的隐藏状态`h_1`,以及时间步2的输入(2,2,2,2)来计算新的隐藏状态`h_2`。- `W_{hh}` 是隐藏状态到隐藏状态的权重矩阵,用于将前一个时间步的隐藏状态(在时间步1之前为全零)结合到当前的隐藏状态中。
2024-08-22 11:33:22 385
原创 LSTM预测模型里,关于“递归预测”的隐藏缺陷
我举个例子,比如有一个 9x5的last_sequence,全部是自变量,数据如下: 1,1,1,1,1 2,2,2,2,2 3,3,3,3,3 4,4,4,4,4 5,5,5,5,5 6,6,6,6,6 7,7,7,7,7 8,8,8,8,8 9,9,9,9,9 通过这个数据预测了第一个未来的因变量的值是19,也就是next_pred。这意味着,虽然模型在训练过程中是使用自变量来预测因变量,但在多步预测时,如果没有真实的自变量数据可用,模型会使用先前预测的因变量数据来填补自变量,继续进行未来的预测。
2024-08-20 17:01:40 434
原创 LSTM分析里,输入数据的time_steps和model的lstm_batch_size的概念
在LSTM模型中,**序列长度**或**时间步**(`time steps`)是指输入数据的一个样本中包含多少个时间点的数据。- 如果你设定 `time_steps = 90`,那么你会将数据重新格式化为 `(number_of_samples, 90, 5)` 的形状,其中 `number_of_samples` 是 `(1000 - 90 + 1)`。它与 `time_steps` 是不同的概念。1. **LSTM序列长度** 和 **训练/预测数据的时间步** 是用来定义每个样本中的时间点数量的。
2024-08-19 10:46:57 279
原创 有时候需要把训练数据进行滑动窗口处理
检查 X_train 和 X_test 的数据量是否少于设定的 time_steps,如果少于,就调整time_steps为数据总量的1/2,并用滑动窗口生成多批次训练数据。- **平滑噪音**:某一天的数据可能会受到偶然因素的干扰(如异常的天气事件),而滑动窗口方法通过使用多天的数据,能够在一定程度上平滑这些噪音,使模型对异常值的敏感性降低。'''----------------将原始数据转化为三维批次数据进行训练---------------------------'''
2024-08-18 23:01:45 298
原创 pyqt5 python 如何触发其他类或控件的事件
pyqt5 python 如何触发其他类或控件的事件:被触发的控件需要单独写成一个类,定义好需要被触发的事件;然后在当前类或程序块调用该控件的event 事件函数,传入对应的 QEvent参数即可。
2022-06-05 16:33:27 925
ecshop 模板制作引导手册 官网出品
2010-09-11
ECSHOP六脉神剑(开发必看)
2010-09-11
Artisteer v2.3.0.23326 多语言版 keygen 序列号生成器
2010-09-11
Beginning Google Maps Applications with PHP and Ajax From Novice to Professional.pdf
2008-10-15
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人