深度学习-计算

深度学习计算

模型构造

让我们回顾一下在3.10节(多层感知机的简洁实现)中含单隐藏层的多层感知机的实现方法。我们首先构造 Sequential实例,然后依次添加两个全连接层。其中第一层的输出大小为256,即隐藏层单元个数是256;第二层的输出大小为10,即输出层单元个数是10。我们在上一章的其他节中也使用了 Sequential类构造模型。这里我们介绍另外一种基于 Module类的模型构造方法:它让模型构造更加灵活。

继承Moudle类来构造模型

Module类是 nn模块里提供的一个模型构造类,是所有神经网络模块的基类,我们可以继承它来定义我们想要的模型。下面继承 Module类构造本节开头提到的多层感知机。这里定义的 MLP类重载了 Module类的 __init__函数和 forward函数。它们分别用于创建模型参数和定义前向计算。前向计算也即正向传播。

import torch
from torch import nn

class MLP(nn.Module):  # 定义MLP类,并继承自nn.Module
    # 声明带有模型参数的层,这里声明了两个全连接层
    def __init__(self, **kwargs):  # 构造函数,它接收一个特殊的参数self(表示类的实例自身),以及可能的其他关键字参数kwargs(用于接收任意数量的关键字参数)
        super(MLP, self).__init__(**kwargs)  # 调用父类构造函数,MLP表示当前类的名称,self表示当前类的实例
        self.hidden = nn.Linear(784, 256)  # 隐藏层
        self.act = nn.ReLU()
        self.output = nn.Linear(256, 10)  # 输出层

    # 定义模型的前向计算,即如何根据输入x计算返回所需要的模型输出
    def forward(self, x):  # 它接收两个参数,self表示类的实例自身,x表示输入数据
        a = self.act(self.hidden(x))  # 首先将输入x传递给隐藏层self.hidden进行线性变换,然后将变换后的结果传递给激活函数self.act进行非线性转换,最后将转换后的结果赋值给变量a
        return self.output(a)  # 将变量a作为输入传递给输出层self.output进行线性变换,并将结果返回作为模型的输出

'''
我们可以实例化MLP类得到模型变量net。下面的代码初始化net并传入输入数据X做一次前向计算。其中,net(X)会调用MLP继承自Module类的__call__函数,这个函数将调用MLP类定义的forward函数来完成前向计算
'''
X = torch.rand(2, 784)
net = MLP()
print(net)  # 打印net形状
print(net(X))
Module的子类

我们刚刚提到,Module类是一个通用的部件。事实上,PyTorch还实现了继承自 Module的可以方便构建模型的类: 如 SequentialModuleListModuleDict等等

Sequential类

当模型的前向计算为简单串联各个层的计算时,Sequential类可以通过更加简单的方式定义模型。这正是 Sequential类的目的:它可以接收一个子模块的有序字典(OrderedDict)或者一系列子模块作为参数来逐一添加 Module的实例,而模型的前向计算就是将这些实例按添加的顺序逐一计算。

下面我们实现一个与 Sequential类有相同功能的 MySequential

from collections import OrderedDict
import torch
from torch import nn
class MySequential(nn.Module):
    def __init__(self, *args):
        super(MySequential, self).__init__()  # 调用父类nn.Module的构造函数
        if len(args) == 1 and isinstance(args[0], OrderedDict): # 判断如果传入的参数只有一个,并且是OrderedDict类型
            for key, module in args[0].items():  # 遍历args[0]中的每个元素,其中args[0]表示传入的OrderedDict参数
                self.add_module(key, module)  # add_module方法会将module添加进self._modules(一个OrderedDict)
        else:  # 传入的是一些Module
            for idx, module in enumerate(args):  # 遍历args中的每个模块,idx表示模块的索引
                self.add_module(str(idx), module)

    def forward(self, input):
        # self._modules返回一个 OrderedDict,保证会按照成员添加时的顺序遍历成员
        for module in self._modules.values():  # 遍历self._modules中的每个模块
            input = module(input)  # 将输入数据input传递给当前模块module进行前向计算,并将计算结果赋值给input,作为下一层模块的输入
        return input  # 返回最终的模型输出

'''我们用MySequential类来实现前面描述的MLP类,并使用随机初始化的模型做一次前向计算。'''
net = MySequential(
        nn.Linear(784, 256),
        nn.ReLU(),
        nn.Linear(256, 10),
        )
print(net)
X = torch.rand(2, 784)
print(net(X))  # 在nn.Module的子类中,定义了forward函数后,可以通过直接调用实例对象来执行前向计算。这是因为在nn.Module中,__call__方法被实现为调用forward函数。

ModuleList类

ModuleList接收一个子模块的列表作为输入,然后也可以类似List那样进行append和extend操作:

from collections import OrderedDict
import torch
from torch import nn

net = nn.ModuleList([nn.Linear(784, 256), nn.ReLU()])
net.append(nn.Linear(256, 10)) # 类似List的append操作,将一个新的线性层nn.Linear(256, 10)添加到net列表的末尾
print(net[-1])  # 类似List的索引访问,通过负索引访问net列表中的最后一个模块,即输出层nn.Linear(256, 10)
print(net)  # 显示模型的结构信息
# net(torch.zeros(1, 784)) # 会报NotImplementedError

#output:
Linear(in_features=256, out_features=10, bias=True)
ModuleList(
  (0): Linear(in_features=784, out_features=256, bias=True)
  (1): ReLU()
  (2): Linear(in_features=256, out_features=10, bias=True)
)

既然 SequentialModuleList都可以进行列表化构造网络,那二者区别是什么呢。ModuleList仅仅是一个储存各种模块的列表,这些模块之间没有联系也没有顺序(所以不用保证相邻层的输入输出维度匹配),而且没有实现 forward功能需要自己实现,所以上面执行 net(torch.zeros(1, 784))会报 NotImplementedError;而 Sequential内的模块需要按照顺序排列,要保证相邻层的输入输出大小相匹配,内部 forward功能已经实现

ModuleList的出现只是让网络定义前向传播时更加灵活,见下面官网的例子:

class MyModule(nn.Module):
    def __init__(self):  # 构造函数
        super(MyModule, self).__init__()  # 调用父类构造函数
        self.linears = nn.ModuleList([nn.Linear(10, 10) for i in range(10)])  # 创建了一个nn.ModuleList对象self.linears,其中包含了10个线性层nn.Linear(10, 10)。通过列表推导式,在循环中创建了这些线性层

    def forward(self, x):
        # ModuleList can act as an iterable, or be indexed using ints
        for i, l in enumerate(self.linears):  # :使用enumerate函数遍历self.linears中的线性层。i表示迭代的索引,l表示当前的线性层
            x = self.linears[i // 2](x) + l(x)  # 将输入数据 x 分别传递给 self.linears[i // 2] 和 l 两个线性层进行前向计算,并将它们的结果相加
        return x

另外,ModuleList不同于一般的Python的 list,加入到 ModuleList里面的所有模块的参数会被自动添加到整个网络中,下面看一个例子对比一下

from torch import nn

class Module_ModuleList(nn.Module):
    def __init__(self):
        super(Module_ModuleList, self).__init__()
        self.linears = nn.ModuleList([nn.Linear(10, 10)])

class Module_List(nn.Module):
    def __init__(self):
        super(Module_List, self).__init__()
        self.linears = [nn.Linear(10, 10)]

net1 = Module_ModuleList()
net2 = Module_List()

print("net1:")
for p in net1.parameters():
    print(p.size())

print("net2:")
for p in net2.parameters():
    print(p)
'''
普通列表没有提供模型追踪和管理的功能。因此,当调用 parameters() 方法时,无法直接访问到 self.linears 中线性层的参数。
在模型的前向计算中,需要手动编写代码来遍历和调用列表中的线性层
'''
#output
net1:
torch.Size([10, 10])
torch.Size([10])
net2:
ModuleDict类

ModuleDict接收一个子模块的字典作为输入, 然后也可以类似字典那样进行添加访问操作:

from torch import nn

net = nn.ModuleDict({
    'linear': nn.Linear(784, 256),
    'act': nn.ReLU(),
})
net['output'] = nn.Linear(256, 10)  # 在net中添加一个键值对,键为'output',值为一个线性层nn.Linear(256, 10)。这样就向net中添加了一个新的模块。
print(net['linear']) # 访问
print(net.output)
print(net)
# net(torch.zeros(1, 784)) 由于ModuleDict并没有实现前向传播函数,所以会报NotImplementedError错误。

#output
Linear(in_features=784, out_features=256, bias=True)
Linear(in_features=256, out_features=10, bias=True)
ModuleDict(
  (act): ReLU()
  (linear): Linear(in_features=784, out_features=256, bias=True)
  (output): Linear(in_features=256, out_features=10, bias=True)
)

ModuleList一样,ModuleDict实例仅仅是存放了一些模块的字典,并没有定义 forward函数需要自己定义。同样,ModuleDict也与Python的 Dict有所不同,ModuleDict里的所有模块的参数会被自动添加到整个网络中

构造复杂的模型

虽然上面介绍的这些类可以使模型构造更加简单,且不需要定义 forward函数,但直接继承 Module类可以极大地拓展模型构造的灵活性。下面我们构造一个稍微复杂点的网络 FancyMLP。在这个网络中,我们通过 get_constant函数创建训练中不被迭代的参数,即常数参数。在前向计算中,除了使用创建的常数参数外,我们还使用 Tensor的函数和Python的控制流,并多次调用相同的层。

import torch
from torch import nn

class FancyMLP(nn.Module):
    def __init__(self, **kwargs):
        super(FancyMLP, self).__init__(**kwargs)

        self.rand_weight = torch.rand((20, 20), requires_grad=False) # 不可训练参数(常数参数)
        self.linear = nn.Linear(20, 20)  # 创建了一个线性层

    def forward(self, x):
        x = self.linear(x)
        # 使用创建的常数参数,以及nn.functional中的relu函数和mm函数
        x = nn.functional.relu(torch.mm(x, self.rand_weight.data) + 1)

        # 复用全连接层。等价于两个全连接层共享参数
        x = self.linear(x)
        # 控制流,这里我们需要调用item函数来返回标量进行比较
        while x.norm().item() > 1:  # 对输入x进行了归一化操作,确保其L2范数不超过1,助于限制输入的范围,使其适应模型的要求,同时保持输入数据的合理范围,有助于提高模型的稳定性和性能
            x /= 2
        if x.norm().item() < 0.8:
            x *= 10
        return x.sum()

X = torch.rand(2, 20)
net = FancyMLP()
print(net)
net(X)

#output
FancyMLP(
  (linear): Linear(in_features=20, out_features=20, bias=True)
)
tensor(0.8432, grad_fn=<SumBackward0>)

因为 FancyMLPSequential类都是 Module类的子类,所以我们可以嵌套调用它们

class NestMLP(nn.Module):
    def __init__(self, **kwargs):
        super(NestMLP, self).__init__(**kwargs)
        self.net = nn.Sequential(nn.Linear(40, 30), nn.ReLU()) 

    def forward(self, x):
        return self.net(x)

net = nn.Sequential(NestMLP(), nn.Linear(30, 20), FancyMLP())

X = torch.rand(2, 40)
print(net)
net(X)

#output
Sequential(
  (0): NestMLP(
    (net): Sequential(
      (0): Linear(in_features=40, out_features=30, bias=True)
      (1): ReLU()
    )
  )
  (1): Linear(in_features=30, out_features=20, bias=True)
  (2): FancyMLP(
    (linear): Linear(in_features=20, out_features=20, bias=True)
  )
)
tensor(14.4908, grad_fn=<SumBackward0>)

模型参数的访问,初始化和共享

在3.3节(线性回归的简洁实现)中,我们通过 init模块来初始化模型的参数。我们也介绍了访问模型参数的简单方法。本节将深入讲解如何访问和初始化模型参数,以及如何在多个层之间共享同一份模型参数。

我们先定义一个与上一节中相同的含单隐藏层的多层感知机。我们依然使用默认方式初始化它的参数,并做一次前向计算。与之前不同的是,在这里我们从 nn中导入了 init模块,它包含了多种模型初始化方法。

import torch
from torch import nn
from torch.nn import init

net = nn.Sequential(nn.Linear(4, 3), nn.ReLU(), nn.Linear(3, 1))  # pytorch已进行默认初始化

print(net)
X = torch.rand(2, 4)
Y = net(X).sum()

#output
Sequential(
  (0): Linear(in_features=4, out_features=3, bias=True)
  (1): ReLU()
  (2): Linear(in_features=3, out_features=1, bias=True)
)
访问模型参数

回忆一下上一节中提到的 Sequential类与 Module类的继承关系。对于 Sequential实例中含模型参数的层,我们可以通过 Module类的 parameters()或者 named_parameters方法来访问所有参数(以迭代器的形式返回),后者除了返回参数 Tensor外还会返回其名字。下面,访问多层感知机 net的所有参数:

print(type(net.named_parameters()))
for name, param in net.named_parameters():
    print(name, param.size())

#output
<class 'generator'>
0.weight torch.Size([3, 4])
0.bias torch.Size([3])
2.weight torch.Size([1, 3])
2.bias torch.Size([1])

可见返回的名字自动加上了层数的索引作为前缀。 我们再来访问 net中单层的参数。对于使用 Sequential类构造的神经网络,我们可以通过方括号 []来访问网络的任一层。索引0表示隐藏层为 Sequential实例最先添加的层。

for name, param in net[0].named_parameters():
    print(name, param.size(), type(param))

#output
weight torch.Size([3, 4]) <class 'torch.nn.parameter.Parameter'>
bias torch.Size([3]) <class 'torch.nn.parameter.Parameter'>

因为这里是单层的所以没有了层数索引的前缀。另外返回的 param的类型为 torch.nn.parameter.Parameter,其实这是 Tensor的子类,和 Tensor不同的是如果一个 TensorParameter,那么它会自动被添加到模型的参数列表里,来看下面这个例子。

import torch
from torch import nn
from torch.nn import init

class MyModel(nn.Module):
    def __init__(self, **kwargs):
        super(MyModel, self).__init__(**kwargs)
        self.weight1 = nn.Parameter(torch.rand(20, 20))  # 通过nn.Parameter将其标记为需要优化的参数。它的初始值为形状为(20, 20)的随机张量
        self.weight2 = torch.rand(20, 20)
    def forward(self, x):
        pass

n = MyModel()
for name, param in n.named_parameters():
    print(name)

#output
weight1

上面的代码中 weight1在参数列表中但是 weight2却没在参数列表中。

因为 ParameterTensor,即 Tensor拥有的属性它都有,比如可以根据 data来访问参数数值,用 grad来访问参数梯度。

weight_0 = list(net[0].parameters())[0]
print(weight_0.data)
print(weight_0.grad) # 反向传播前梯度为None
Y.backward()
print(weight_0.grad)

#output
tensor([[ 0.2719, -0.0898, -0.2462,  0.0655],
        [-0.4669, -0.2703,  0.3230,  0.2067],
        [-0.2708,  0.1171, -0.0995,  0.3913]])
None
tensor([[-0.2281, -0.0653, -0.1646, -0.2569],
        [-0.1916, -0.0549, -0.1382, -0.2158],
        [ 0.0000,  0.0000,  0.0000,  0.0000]])

初始化模型参数

PyTorch的 init模块里提供了多种预设的初始化方法。在下面的例子中,我们将权重参数初始化成均值为0、标准差为0.01的正态分布随机数,并依然将偏差参数清零

for name, param in net.named_parameters():
    if 'weight' in name:
        init.normal_(param, mean=0, std=0.01)
        print(name, param.data)

#output
0.weight tensor([[ 0.0030,  0.0094,  0.0070, -0.0010],
        [ 0.0001,  0.0039,  0.0105, -0.0126],
        [ 0.0105, -0.0135, -0.0047, -0.0006]])
2.weight tensor([[-0.0074,  0.0051,  0.0066]])

下面使用常数来初始化权重参数

for name, param in net.named_parameters():
    if 'bias' in name:
        init.constant_(param, val=0)
        print(name, param.data)
自定义初始化方法

有时候我们需要的初始化方法并没有在 init模块中提供。这时,可以实现一个初始化方法,从而能够像使用其他初始化方法那样使用它。在这之前我们先来看看PyTorch是怎么实现这些初始化方法的,例如 torch.nn.init.normal_

def normal_(tensor, mean=0, std=1):
    with torch.no_grad():
        return tensor.normal_(mean, std)

可以看到这就是一个inplace改变 Tensor值的函数,而且这个过程是不记录梯度的。 类似的我们来实现一个自定义的初始化方法。在下面的例子里,我们令权重有一半概率初始化为0,有另一半概率初始化为[10**,5**][−10,−5][10,5**]和**[5,10][5,10][5,10]两个区间里均匀分布的随机数。

def init_weight_(tensor):
    with torch.no_grad():
        tensor.uniform_(-10, 10) # 均匀分布的随机初始化
        tensor *= (tensor.abs() >= 5).float()

for name, param in net.named_parameters():
    if 'weight' in name:
        init_weight_(param)
        print(name, param.data)

此外,我们还可以通过改变这些参数的 data来改写模型参数值同时不会影响梯度

for name, param in net.named_parameters():
    if 'bias' in name:
        param.data += 1
        print(name, param.data)
#output
0.bias tensor([1.2821, 1.1869, 1.0025])
2.bias tensor([1.0862])
共享模型参数

在有些情况下,我们希望在多个层之间共享模型参数。4.1.3节提到了如何共享模型参数: Module类的 forward函数里多次调用同一个层。此外,如果我们传入 Sequential的模块是同一个 Module实例的话参数也是共享的,下面来看一个例子:

linear = nn.Linear(1, 1, bias=False)
net = nn.Sequential(linear, linear) 
print(net)
for name, param in net.named_parameters():
    init.constant_(param, val=3)
    print(name, param.data)

#output
Sequential(
  (0): Linear(in_features=1, out_features=1, bias=False)
  (1): Linear(in_features=1, out_features=1, bias=False)
)
0.weight tensor([[3.]])

在内存中,这两个线性层其实一个对象:

print(id(net[0]) == id(net[1]))
print(id(net[0].weight) == id(net[1].weight))

#output
True
True

因为模型参数里包含了梯度,所以在反向传播计算时,这些共享的参数的梯度是累加的:

x = torch.ones(1, 1)
y = net(x).sum()
print(y)
y.backward()
print(net[0].weight.grad) # 单次梯度是3,两次所以就是6

#output
tensor(9., grad_fn=<SumBackward0>)
tensor([[6.]])

自定义层

不含模型参数的自定义层

下面的 CenteredLayer类通过继承 Module类自定义了一个将输入减掉均值后输出的层,并将层的计算定义在了 forward函数里。这个层里不含模型参数

import torch
from torch import nn

class CenteredLayer(nn.Module):
    def __init__(self, **kwargs):
        super(CenteredLayer, self).__init__(**kwargs)
    def forward(self, x):
        return x - x.mean()
'''我们可以实例化这个层,然后做前向计算'''
layer = CenteredLayer()
layer(torch.tensor([1, 2, 3, 4, 5], dtype=torch.float))

'''我们也可以用它来构造更复杂的模型'''
net = nn.Sequential(nn.Linear(8, 128), CenteredLayer())

'''下面打印自定义层各个输出的均值。因为均值是浮点数,所以它的值是一个很接近0的数'''
y = net(torch.rand(4, 8))
y.mean().item()

#output:7.450580596923828e-09
含模型参数的自定义层

我们还可以自定义含模型参数的自定义层。其中的模型参数可以通过训练学出。

在4.2节(模型参数的访问、初始化和共享)中介绍了 Parameter类其实是 Tensor的子类,如果一个 TensorParameter,那么它会自动被添加到模型的参数列表里。所以在自定义含模型参数的层时,我们应该将参数定义成 Parameter,除了像4.2.1节那样直接定义成 Parameter类外,还可以使用 ParameterListParameterDict分别定义参数的列表和字典。

ParameterList接收一个 Parameter实例的列表作为输入然后得到一个参数列表,使用的时候可以用索引来访问某个参数,另外也可以使用 appendextend在列表后面新增参数。

class MyDense(nn.Module):
    def __init__(self):
        super(MyDense, self).__init__()
        self.params = nn.ParameterList([nn.Parameter(torch.randn(4, 4)) for i in range(3)])
        self.params.append(nn.Parameter(torch.randn(4, 1)))

    def forward(self, x):
        for i in range(len(self.params)):
            x = torch.mm(x, self.params[i])
        return x
net = MyDense()
print(net)

#output
MyDense(
  (params): ParameterList(
      (0): Parameter containing: [torch.FloatTensor of size 4x4]
      (1): Parameter containing: [torch.FloatTensor of size 4x4]
      (2): Parameter containing: [torch.FloatTensor of size 4x4]
      (3): Parameter containing: [torch.FloatTensor of size 4x1]
  )
)

ParameterDict接收一个 Parameter实例的字典作为输入然后得到一个参数字典,然后可以按照字典的规则使用了。例如使用 update()新增参数,使用 keys()返回所有键值,使用 items()返回所有键值对等等,可参考官方文档

class MyDictDense(nn.Module):
    def __init__(self):
        super(MyDictDense, self).__init__()
        self.params = nn.ParameterDict({
                'linear1': nn.Parameter(torch.randn(4, 4)),
                'linear2': nn.Parameter(torch.randn(4, 1))
        })
        self.params.update({'linear3': nn.Parameter(torch.randn(4, 2))}) # 新增

    def forward(self, x, choice='linear1'):
        return torch.mm(x, self.params[choice])

net = MyDictDense()
print(net)
#output
MyDictDense(
  (params): ParameterDict(
      (linear1): Parameter containing: [torch.FloatTensor of size 4x4]
      (linear2): Parameter containing: [torch.FloatTensor of size 4x1]
      (linear3): Parameter containing: [torch.FloatTensor of size 4x2]
  )
)

'''这样就可以根据传入的键值来进行不同的前向传播'''
x = torch.ones(1, 4)
print(net(x, 'linear1'))
print(net(x, 'linear2'))
print(net(x, 'linear3'))
#output
tensor([[1.5082, 1.5574, 2.1651, 1.2409]], grad_fn=<MmBackward>)
tensor([[-0.8783]], grad_fn=<MmBackward>)
tensor([[ 2.2193, -1.6539]], grad_fn=<MmBackward>)

'''我们也可以使用自定义层构造模型。它和PyTorch的其他层在使用上很类似'''
net = nn.Sequential(
    MyDictDense(),
    MyListDense(),
)
print(net)
print(net(x))
#output
Sequential(
  (0): MyDictDense(
    (params): ParameterDict(
        (linear1): Parameter containing: [torch.FloatTensor of size 4x4]
        (linear2): Parameter containing: [torch.FloatTensor of size 4x1]
        (linear3): Parameter containing: [torch.FloatTensor of size 4x2]
    )
  )
  (1): MyListDense(
    (params): ParameterList(
        (0): Parameter containing: [torch.FloatTensor of size 4x4]
        (1): Parameter containing: [torch.FloatTensor of size 4x4]
        (2): Parameter containing: [torch.FloatTensor of size 4x4]
        (3): Parameter containing: [torch.FloatTensor of size 4x1]
    )
  )
)
tensor([[-101.2394]], grad_fn=<MmBackward>)

读取和存储

到目前为止,我们介绍了如何处理数据以及如何构建、训练和测试深度学习模型。然而在实际中,我们有时需要把训练好的模型部署到很多不同的设备。在这种情况下,我们可以把内存中训练好的模型参数存储在硬盘上供后续读取使用

读写Tensor

我们可以直接使用 save函数和 load函数分别存储和读取 Tensorsave使用Python的pickle实用程序将对象进行序列化,然后将序列化的对象保存到disk,使用 save可以保存各种对象,包括模型、张量和字典等。而 load使用pickle unpickle工具将pickle的对象文件反序列化为内存

'''下面的例子创建了Tensor变量x,并将其存在文件名同为x.pt的文件里'''
import torch
from torch import nn

x = torch.ones(3)
torch.save(x, 'x.pt')  # 存在同个工程目录下

'''然后我们将数据从存储的文件读回内存'''
x2 = torch.load('x.pt')
print(x2)
#output:tensor([1., 1., 1.])

'''我们还可以存储一个Tensor列表并读回内存。'''
y = torch.zeros(4)
torch.save([x, y], 'xy.pt')
xy_list = torch.load('xy.pt')
print(xy_list)
#output: [tensor([1., 1., 1.]), tensor([0., 0., 0., 0.])]

'''存储并读取一个从字符串映射到Tensor的字典'''
torch.save({'x': x, 'y': y}, 'xy_dict.pt')
xy = torch.load('xy_dict.pt')
print(xy)
#output: {'x': tensor([1., 1., 1.]), 'y': tensor([0., 0., 0., 0.])}
读写模型
state_dict

在PyTorch中,Module的可学习参数(即权重和偏差),模块模型包含在参数中(通过 model.parameters()访问)。state_dict是一个从参数名称隐射到参数 Tesnor的字典对象

class MLP(nn.Module):
    def __init__(self):
        super(MLP, self).__init__()
        self.hidden = nn.Linear(3, 2)
        self.act = nn.ReLU()
        self.output = nn.Linear(2, 1)

    def forward(self, x):
        a = self.act(self.hidden(x))
        return self.output(a)

net = MLP()
print(net.state_dict())
#output:
OrderedDict([('hidden.weight', tensor([[ 0.2448,  0.1856, -0.5678],
                      [ 0.2030, -0.2073, -0.0104]])),
             ('hidden.bias', tensor([-0.3117, -0.4232])),
             ('output.weight', tensor([[-0.4556,  0.4084]])),
             ('output.bias', tensor([-0.3573]))])

'''
注意,只有具有可学习参数的层(卷积层、线性层等)才有state_dict中的条目。优化器(optim)也有一个state_dict,其中包含关于优化器状态以及所使用的超参数的信息
'''
optimizer = torch.optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
print(optimizer.state_dict())
#output: 
{'param_groups': [{'dampening': 0,
   'lr': 0.001,
   'momentum': 0.9,
   'nesterov': False,
   'params': [4736167728, 4736166648, 4736167368, 4736165352],
   'weight_decay': 0}],
 'state': {}}
保存和加载模型

PyTorch中保存和加载训练模型有两种常见的方法:

  1. 仅保存和加载模型参数(state_dict);
  2. 保存和加载整个模型。

保存和加载state_dict(推荐)

'''保存'''
torch.save(model.state_dict(), filename) # 推荐的文件后缀名是pt或pth

'''加载'''
model = TheModelClass(*args, **kwargs)
model.load_state_dict(torch.load(filename))

保存和加载整个模型

torch.save(model, PATH)  #保存
model = torch.load(PATH)  #加载

我们采用推荐的方法一来实验一下

X = torch.randn(2, 3)
Y = net(X)

PATH = "./net.pt"
torch.save(net.state_dict(), PATH)

net2 = MLP()
net2.load_state_dict(torch.load(PATH))
Y2 = net2(X)
Y2 == Y
#output
tensor([[1],
        [1]], dtype=torch.uint8)

因为这 netnet2都有同样的模型参数,那么对同一个输入 X的计算结果将会是一样的。上面的输出也验证了这一点

GPU计算(但是我没有CUDA😣)

计算设备

torch.cuda.is_available()查看GPU是否可用

torch.cuda.device_count()查看GPU数量

torch.cuda.current_device()查看当前GPU名字

Tensor的GPU计算

默认情况下,Tensor会被存在内存上。因此,之前我们每次打印 Tensor的时候看不到GPU相关标识

使用 .cuda()可以将CPU上的 Tensor转换(复制)到GPU上。如果有多块GPU,我们用 .cuda(i)来表示第 i 块GPU及相应的显存(i 从0开始)且 cuda(0)cuda()等价。

x = x.cuda(0)
print(x)
#output:tensor([1, 2, 3], device='cuda:0')

'''我们可以通过Tensor的device属性来查看该Tensor所在的设备'''
x.device
#output:device(type='cuda', index=0)

可以直接在创建的时候就指定设备

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
x = torch.tensor([1, 2, 3], device=device)
# or
x = torch.tensor([1, 2, 3]).to(device)
#output:tensor([1, 2, 3], device='cuda:0')

如果对在GPU上的数据进行运算,那么结果还是存放在GPU上

y = x**2
print(y)
#output:tensor([1, 4, 9], device='cuda:0')

需要注意的是,存储在不同位置中的数据是不可以直接进行计算的。即存放在CPU上的数据不可以直接与存放在GPU上的数据进行运算,位于不同GPU上的数据也是不能直接进行计算的

模型的GPU计算

Tensor类似,PyTorch模型也可以通过 .cuda转换到GPU上。我们可以通过检查模型的参数的 device属性来查看存放模型的设备

net = nn.Linear(3, 1)
list(net.parameters())[0].device
#output:device(type='cpu')

'''可见模型在CPU上,将其转换到GPU上:'''
net.cuda()
list(net.parameters())[0].device
#output: device(type='cuda', index=0)

总之,PyTorch要求计算的所有输入数据都在内存或同一块显卡的显存上。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值