c++动态规划4——环形动态规划

一、什么是环形DP

环形动态规划(Circular Dynamic Programming)是处理环形结构数据的一类特殊DP问题。与线性DP不同,环形DP中第一个元素和最后一个元素相邻,形成一个闭环。这种结构导致起点和终点可以相互影响,增加了问题的复杂性。

1.1环形DP的核心

  1. 循环依赖:首尾元素相互影响,难以确定起点

  2. 状态转移复杂:需要考虑跨越首尾边界的情况

  3. 解空间扩大:最优解可能出现在环上的任意位置

1.2环形问题的通用解法

破环成链法:将环形结构转化为线性结构处理

  1. 复制原始序列并接在其尾部

  2. 在长度为2N的新序列上进行线性DP

  3. 计算结果时,枚举所有长度为N的区间

二、经典问题1:环形石子合并

2.1问题描述

将 n堆石子绕圆形操场排放,现要将石子有序地合并成一堆。规定每次只能选相邻的两堆合并成新的一堆,并将新的一堆的石子数记做该次合并的得分请编写一个程序,读入堆数n及每堆的石子数,并进行如下计算 1、选择一种合并石子的方案,使得做 n-1次合并得分总和最大。 2、选择一种合并石子的方案,使得做 n-1次合并得分总和最小

输入格式: 输入第一行一个整数 n,表示有 n堆石子, 第二行 n个整数,表示每堆石子的数量。

输出格式: 输出共两行 第一行为合并得分总和最小值,第二行为合并得分总和最大值,

输入样例: 4 4 5 9 4 

输出样例: 43   54

对于100%的数据,有1≤n≤200

2.2 破环成链

int a[201]; // 原始石子数组
int sum[202]; // 前缀和数组

// 复制序列
for(int i = 1; i <= n; i++) {
    cin >> a[i];
    a[n+i] = a[i]; // 复制一份接在尾部
}

// 计算前缀和
for(int i = 1; i <= 2*n; i++) {
    sum[i] = sum[i-1] + a[i];
}

2.3 状态定义

f[i][j]:合并区间[i,j]内石子的最小代价

2.4 状态转移方程

f[i][j] =  min(f[i][j], dfs_min(i, j) + dfs_min(i + 1, j) + sum[j] - sum[i - 1]);

2.5 记忆化搜索实现

int dfs(int begin, int end) {
    if(f[begin][end]) return f[begin][end]; // 记忆化
    if(begin >= end) return 0; // 边界条件
    
    int ret = MAX_INT;
    for(int k = begin; k < end; k++) {
        int cost = dfs(begin, k) + dfs(k+1, end) + sum[end] - sum[begin-1];
        ret = min(ret, cost);
    }
    
    f[begin][end] = ret; // 存储结果
    return ret;
}

2.6 完整代码

#include <iostream>
using namespace std;

int sum[202], a[101]; // 声明存储石子总数的数组sum和存储每堆石子数量的数组a
int n; // 存储石子堆数量

int f[202][202]; // 用于存储最小得分的动态规划数组
int fmax[202][202]; // 用于存储最大得分的动态规划数组

// 计算任意两点之间的最小合并分数和
int dfs_min(int s, int e)
{
    if (s >= e)
        return 0;
    if (f[s][e])
        return f[s][e];
    int ans = 0x3f3f3f3f; // 初始化ans为一个较大的值
    for (int k = s; k < e; k++)
        ans = min(ans, dfs_min(s, k) + dfs_min(k + 1, e) + sum[e] - sum[s - 1]);
    f[s][e] = ans;
    return ans;
}

// 计算任意两点之间的最大合并分数和
int dfs_max(int s, int e)
{
    if (s >= e)
        return 0;
    if (fmax[s][e])
        return fmax[s][e];
    int ans = 0;
    for (int k = s; k < e; k++)
        ans = max(ans, dfs_max(s, k) + dfs_max(k + 1, e) + sum[e] - sum[s - 1]);
    fmax[s][e] = ans;
    return ans;
}

int main()
{
    cin >> n; // 输入石子堆数量
    for (int i = 1; i <= n; i++)
    {
        cin >> a[i]; // 输入每堆石子数量
        sum[i] = sum[i - 1] + a[i]; // 计算前缀和,表示前i堆石子总数
    }

    // 将前缀和连接成2n-1的链,用于求解任意两点之间的合并分数和
    for (int i = 1; i <= n - 1; i++)
    {
        sum[n + i] = sum[n + i - 1] + a[i];
    }

    // 求链上任意两点的最小合并分数和和最大合并分数和
    dfs_min(1, 2 * n - 1);
    dfs_max(1, 2 * n - 1);

    int ansmin = 0x3f3f3f3f; // 初始化最小值
    int ansmax = 0; // 初始化最大值 

    // 枚举链上长度为n的区间,找出其中的最小值和最大值
    for (int i = 1; i <= n; i++)
    {
        ansmin = min(ansmin, f[i][i + n - 1]);
        ansmax = max(ansmax, fmax[i][i + n - 1]);
    }
    // 输出最小得分和最大得分
    cout << ansmin << endl << ansmax;
    
    return 0;
}

三、经典问题2:能量项链

3.1 问题描述

环形排列的能量珠,每颗珠子有头尾标记。合并相邻珠子释放能量:m*r*n,其中m为前珠头标记,r为前珠尾标记(后珠头标记),n为后珠尾标记。

3.2 破环成链

int lace[201]; // 存储头标记
cin >> n;
for(int i = 1; i <= n; i++) {
    cin >> lace[i];
    lace[n+i] = lace[i]; // 复制序列
}

3.3 状态定义

f[i][j]:合并区间[i,j]内珠子释放的最大能量

3.4 状态转移方程

f[i][j] = max(maxn, search(i, k) + search(k+1, j) + lace[i] * lace[k+1] * lace[j+1]); 

3.5 记忆化搜索实现

int search(int i, int j) {
    if(f[i][j]) return f[i][j]; // 记忆化
    if(i >= j) return 0; // 边界条件
    
    int maxn = 0;
    for(int k = i; k < j; k++) {
        int energy = search(i, k) + search(k+1, j) 
                    + lace[i] * lace[k+1] * lace[j+1];
        maxn = max(maxn, energy);
    }
    
    f[i][j] = maxn; // 存储结果
    return maxn;
}

3.6 完整代码

#include <iostream>
using namespace std;

int n; // 存储项链上珠子的个数
int lace[201]; // 存储珠子的标记
int f[202][202]; // 用来存储动态转移方程中的结果 
// 函数search:搜索从第i到第j颗珠子聚合后释放的能量的最大值
int search(int i, int j)
{
    if(f[i][j]) // 如果f[i][j]已经计算过,则直接返回结果
        return f[i][j];
    if(i >= j) // 如果i大于等于j,说明没有珠子可聚合,返回0
        return 0;
    int maxn = 0; // 用来记录搜索过程中的最大能量值
    for(int k = i; k < j; k++) // 循环遍历所有可能的分割点k
        maxn = max(maxn, search(i, k) + search(k+1, j) + lace[i] * lace[k+1] * lace[j+1]); 
                    // 更新maxn为当前的最大能量值
    f[i][j] = maxn; // 将计算得到的结果存入f数组中
    return maxn; // 返回从第i到第j颗珠子聚合后释放的能量的最大值
}
int main()
{
    cin >> n; // 输入项链上珠子的个数n
    for(int i = 1; i <= n; i++) // 循环读入每颗珠子的标记
    {
        cin >> lace[i]; // 输入第i颗珠子的头标记
        lace[n+i] = lace[i]; // 将尾标记设置为与头标记相同
    }
     // 将前缀和连接成2n-1的链,用于求解任意两点之间的能量和
    search(1, 2*n-1); // 调用search函数计算能量释放的最大值
    int maxn = 0; // 记录最终的最大能量值
    for(int i = 1; i <= n; i++) // 遍历所有可能的起始位置
        maxn = max(maxn, f[i][i+n-1]); // 更新maxn为当前的最大能量值
    cout << maxn; 
    return 0; 
}

四、环形DP特点总结

4.1. 状态定义

  • 区间型DP:dp[i][j]表示区间[i,j]的最优解

  • 状态含义与线性DP相似,但区间长度需考虑环状特性

4.2. 状态转移

  • 枚举分割点k,将区间分为[i,k]和[k+1,j]

  • 合并代价包含三部分:左区间代价 + 右区间代价 + 当前合并代价

4.3. 环形处理关键

// 序列复制
for(int i = 1; i <= n; i++) {
    arr[n+i] = arr[i];
}

// 结果枚举
for(int i = 1; i <= n; i++) {
    ans = min/max(ans, dp[i][i+n-1]);
}

4.4. 时间复杂度

  • 状态数:O(N²)

  • 每个状态转移:O(N)

  • 总时间复杂度:O(N³)

五、环形DP扩展应用

5.1. 环形子数组最大和

int maxSubarraySumCircular(vector<int>& nums) {
    int n = nums.size();
    vector<int> arr(2*n);
    // 复制数组
    for(int i = 0; i < n; i++) {
        arr[i] = arr[i+n] = nums[i];
    }
    
    // DP求解
    int maxSum = INT_MIN;
    vector<int> dp(2*n);
    for(int i = 0; i < 2*n; i++) {
        if(i == 0) dp[i] = arr[i];
        else dp[i] = max(arr[i], dp[i-1] + arr[i]);
        if(i >= n-1) maxSum = max(maxSum, dp[i]);
    }
    
    return maxSum;
}

5.2. 环形房屋盗窃

int robCircular(vector<int>& nums) {
    int n = nums.size();
    if(n == 0) return 0;
    if(n == 1) return nums[0];
    
    // 分两种情况:偷第一间和不偷第一间
    return max(robRange(nums, 0, n-2), robRange(nums, 1, n-1));
}

int robRange(vector<int>& nums, int start, int end) {
    int dp0 = 0, dp1 = 0;
    for(int i = start; i <= end; i++) {
        int temp = max(dp1, dp0 + nums[i]);
        dp0 = dp1;
        dp1 = temp;
    }
    return dp1;
}

六、环形DP优化技巧

6.1. 单调队列优化

对于某些环形问题,可以使用单调队列将时间复杂度优化到O(N)

// 环形滑动窗口最大值
vector<int> maxSlidingWindowCircular(vector<int>& nums, int k) {
    int n = nums.size();
    vector<int> arr(2*n);
    for(int i = 0; i < 2*n; i++) {
        arr[i] = nums[i % n];
    }
    
    deque<int> dq;
    vector<int> result;
    for(int i = 0; i < 2*n; i++) {
        // 维护单调递减队列
        while(!dq.empty() && arr[dq.back()] <= arr[i]) {
            dq.pop_back();
        }
        dq.push_back(i);
        
        // 移除超出窗口的元素
        if(dq.front() <= i - k) {
            dq.pop_front();
        }
        
        // 获取窗口最大值
        if(i >= k-1) {
            result.push_back(arr[dq.front()]);
        }
    }
    return result;
}

6.2. 状态压缩

对于某些特殊环形问题,可以压缩状态空间

// 环形染色问题
int circleColor(int n) {
    // dp[i]表示i个位置环形染色的方案数
    vector<long> dp(n+1);
    dp[1] = 3; // 三种颜色
    dp[2] = 6; // 3*2
    
    for(int i = 3; i <= n; i++) {
        // 状态转移:考虑首尾颜色关系
        dp[i] = dp[i-1] + 2 * dp[i-2];
    }
    return dp[n];
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值