1、resnet152
解决因深度增加而产生的性能下降问题,作者提出下面一种结构来做residual learning,这篇文章主要得改善就是对传统的卷积模型增加residual learning,通过残差优化来找到近似最优identity mappings。
2、一些常见的图像数据增强方式有:
- 亮度,饱和度,对比度的随机变化
- 随机裁剪(Random Crop)
- 随机缩放(Random Resize)
- 水平/垂直翻转(Horizontal/Vertiacal Filp)
- 旋转(Rotation)
- 加模糊(Blurring)
- 加高斯噪声(Gaussian Noise
3、pytorch transforms.compose
将多个transform
组合起来使用
4、pytorch 类似keras model.summary()一样查看网络结构和输出维度
#!pip install torchsummary
from torchsummary import summary
print(Net())
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = Net().to(device)
summary(model, (1, 28, 28))
5、bleu使用
默认是bleu-4
BLEU-1,weights=(1, 0, 0, 0)
BLEU-2,weights=(0.5, 0.5, 0, 0)
BLEU-3,weights=(0.33, 0.33, 0.33, 0)
BLEU-4,weights=(0.25, 0.25, 0.25, 0.25)