问题

1、resnet152

      解决因深度增加而产生的性能下降问题,作者提出下面一种结构来做residual learning,这篇文章主要得改善就是对传统的卷积模型增加residual learning,通过残差优化来找到近似最优identity mappings。

2、一些常见的图像数据增强方式有:

  • 亮度,饱和度,对比度的随机变化
  • 随机裁剪(Random Crop)
  • 随机缩放(Random Resize)
  • 水平/垂直翻转(Horizontal/Vertiacal Filp)
  • 旋转(Rotation)
  • 加模糊(Blurring)
  • 加高斯噪声(Gaussian Noise

3、pytorch transforms.compose

      将多个transform组合起来使用

4、pytorch 类似keras model.summary()一样查看网络结构和输出维度

#!pip install torchsummary
from torchsummary import summary

print(Net())
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = Net().to(device)
summary(model, (1, 28, 28))

5、bleu使用

默认是bleu-4

BLEU-1,weights=(1, 0, 0, 0)

BLEU-2,weights=(0.5, 0.5, 0, 0)

BLEU-3,weights=(0.33, 0.33, 0.33, 0)

BLEU-4,weights=(0.25, 0.25, 0.25, 0.25)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值