飞桨Paddle学习笔记03-Mnist

本文介绍了如何对MNIST数据集进行训练,通过加入训练、调试和优化环节,并利用VisualDL进行实时性能监控和模型评估。作者详细展示了如何使用Adam优化器,设置学习率,以及在训练过程中记录和可视化关键指标。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

对之前的代码进行修改,加入了训练、调试与优化部分,并用VisualDL进行可视化分析;

代码如下:

# 加载相关库
import os
import random
import paddle
import numpy as np
from PIL import Image
import gzip
import json


# 定义数据集读取器
def load_data(mode='train'):

    # 读取数据文件
    datafile = 'mnist.json.gz'
    print('loading mnist dataset from {} ......'.format(datafile))
    data = json.load(gzip.open(datafile))
    # 读取数据集中的训练集,验证集和测试集
    train_set, val_set, eval_set = data

    # 数据集相关参数,图片高度IMG_ROWS, 图片宽度IMG_COLS
    IMG_ROWS = 28
    IMG_COLS = 28
    # 根据输入mode参数决定使用训练集,验证集还是测试
    if mode == 'train':
        imgs = train_set[0]
        labels = train_set[1]
    elif mode == 'valid':
        imgs = val_set[0]
        labels = val_set[1]
    elif mode == 'eval':
        imgs = eval_set[0]
        labels = eval_set[1]
    # 获得所有图像的数量
    imgs_length = len(imgs)
    # 验证图像数量和标签数量是否一致
    assert len(imgs) == len(labels), \
          "length of train_imgs({}) should be the same as train_labels({})".format(
                  len(imgs), len(labels))

    index_list = list(range(imgs_length))

    # 读入数据时用到的batchsize
    BATCHSIZE = 100

    # 定义数据生成器
    def data_generator():
        # 训练模式下,打乱训练数据
        if mode == 'train':
            random.shuffle(index_list)
        imgs_list = []
        labels_list = []
        # 按照索引读取数据
        for i in index_list:
            # 读取图像和标签,转换其尺寸和类型
            img = np.reshape(imgs[i], [1, IMG_ROWS, IMG_COLS]).astype('float32')
            label = np.reshape(labels[i], [1]).astype('int64')
            imgs_list.append(img)
            labels_list.append(label)
            # 如果当前数据缓存达到了batch size,就返回一个批次数据
            if len(imgs_list) == BATCHSIZE:
                yield np.array(imgs_list), np.array(labels_list)
                # 清空数据缓存列表
                imgs_list = []
                labels_list = []

        # 如果剩余数据的数目小于BATCHSIZE,
        # 则剩余数据一起构成一个大小为len(imgs_list)的mini-batch
        if len(imgs_list) > 0:
            yield np.array(imgs_list), np.array(labels_list)

    return data_generator


# 定义模型结构
import paddle.nn.functional as F
from paddle.nn import Conv2D, MaxPool2D, Linear


# 多层卷积神经网络实现
class MNIST(paddle.nn.Layer):
    def __init__(self):
        super(MNIST, self).__init__()

        # 定义卷积层,输出特征通道out_channels设置为20,卷积核的大小kernel_size为5,卷积步长stride=1,padding=2
        self.conv1 = Conv2D(in_channels=1, out_channels=20, kernel_size=5, stride=1, padding=2)
        # 定义池化层,池化核的大小kernel_size为2,池化步长为2
        self.max_pool1 = MaxPool2D(kernel_size=2, stride=2)
        # 定义卷积层,输出特征通道out_channels设置为20,卷积核的大小kernel_size为5,卷积步长stride=1,padding=2
        self.conv2 = Conv2D(in_channels=20, out_channels=20, kernel_size=5, stride=1, padding=2)
        # 定义池化层,池化核的大小kernel_size为2,池化步长为2
        self.max_pool2 = MaxPool2D(kernel_size=2, stride=2)
        # 定义一层全连接层,输出维度是10
        self.fc = Linear(in_features=980, out_features=10)

    # 定义网络前向计算过程,卷积后紧接着使用池化层,最后使用全连接层计算最终输出
    # 卷积层激活函数使用Relu,全连接层激活函数使用softmax
    def forward(self, inputs, label):
        x = self.conv1(inputs)
        x = F.relu(x)
        x = self.max_pool1(x)
        x = self.conv2(x)
        x = F.relu(x)
        x = self.max_pool2(x)
        x = paddle.reshape(x, [x.shape[0], 980])
        x = self.fc(x)
        if label is not None:
            acc = paddle.metric.accuracy(input=x, label=label)
            return x, acc
        else:
            return x


# 调用加载数据的函数
train_loader = load_data('train')

# 在使用GPU机器时,可以将use_gpu变量设置成True
use_gpu = False
paddle.set_device('gpu:0') if use_gpu else paddle.set_device('cpu')

# 引入VisualDL库,并设定保存作图数据的文件位置
from visualdl import LogWriter

log_writer = LogWriter(logdir="./log")


def train(model):
    model.train()

    # 设置学习率,学习率的主流优化算法:SGD、Momentum、AdaGrad、Adam
    opt = paddle.optimizer.Adam(learning_rate=0.001, parameters=model.parameters())

    EPOCH_NUM = 10
    iter = 0
    for epoch_id in range(EPOCH_NUM):
        for batch_id, data in enumerate(train_loader()):
            # 准备数据,变得更加简洁
            images, labels = data
            images = paddle.to_tensor(images)
            labels = paddle.to_tensor(labels)

            # 前向计算的过程,同时拿到模型输出值和分类准确率
            predicts, avg_acc = model(images, labels)
            # 计算损失,取一个批次样本损失的平均值
            loss = F.cross_entropy(predicts, labels)
            avg_loss = paddle.mean(loss)

            # 每训练了100批次的数据,打印下当前Loss的情况
            if batch_id % 100 == 0:
                print("epoch: {}, batch: {}, loss is: {}, acc is {}".format(epoch_id, batch_id, avg_loss.numpy(),
                                                                            avg_acc.numpy()))
                # 在训练过程中插入VisualDL的作图语句
                log_writer.add_scalar(tag='acc', step=iter, value=avg_acc.numpy())
                log_writer.add_scalar(tag='loss', step=iter, value=avg_loss.numpy())
                iter = iter + 100

            # 后向传播,更新参数的过程
            avg_loss.backward()
            opt.step()
            opt.clear_grad()

    # 保存模型参数
    paddle.save(model.state_dict(), 'mnist.pdparams')


model = MNIST()
train(model)

在终端输入命令:

visualdl --logdir ./log --port 8080

得到终端输出的网址:

VisualDL 2.2.1
Running VisualDL at http://localhost:8080/ (Press CTRL+C to quit)
Serving VisualDL on localhost; to expose to the network, use a proxy or pass --host 0.0.0.0

在浏览器中复制网址,得到结果如下:

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值