模型部署
文章平均质量分 93
AICVHub
计算机专业背景/高级算法工程师/数据分析师/算法架构师/人工智能领域优质创作者/CSDN博客专家,专注AI领域知识分享,涉及内容从paper解读/源码剖析/数据处理/模型优化,到算法落地与工程化部署;领域包括:机器学习/深度学习/计算机视觉/音频处理/信号处理/结构化数据分析与挖掘/服务器&端侧AI算法部署;topic包括但不限于:图像单&多标签分类、目标检测、图像分割、图像检索、人脸识别、音频分类、声纹识别等;擅长[学术-->工业]算法落地,从实用性出发解决业务痛点,曾负责多项大型AI项目的研发与落地;曾研发出多项业界领先的产品/模型。
展开
-
RKNN:yolov8模型转换与板端推理流程
记录了“yolov8的torch模型转onnx再转rknn,并在瑞芯微RK3588上进行推理验证”的过程。原创 2024-04-27 14:35:54 · 5191 阅读 · 20 评论 -
Minio: 文件类型数据存储
另一种方式是,将这些文件以对象的方式存储到云服务器上,这样既没有丢失风险,也不必担心本地磁盘被撑爆,同时也方便给他人分享数据。我们这里提供了一种客户端实现,可以将文件或者对象上传到指定的服务器路径上,并根据指定的“bucket”进行查询与自动创建。在这里,我们利用了一个叫做Minio的对象存储方式,它可以提供安全、可靠、边界的存储及分享方式。:param bucket_names: 桶名称,用于存放数据的根目录。支持两种上传方式:文件形式、对象形式。:param secret_key: 密码。原创 2024-04-07 11:39:32 · 1238 阅读 · 0 评论 -
MQTT:通过消息队列进行消息传递
简要介绍了一个利用消息队列进行算法结果上传的方法,并给出了Python代码实现。原创 2024-04-07 11:38:37 · 1109 阅读 · 0 评论 -
TensorRT INT8量化原理以及如何编写校准器类进行校准
针对TensorRT INT8量化的具体过程及如何准备校准集、编写校准器进行详细介绍,并使用Python API进行实战。原创 2020-06-18 16:11:24 · 8388 阅读 · 18 评论 -
Pytorch转ONNX转TensorRT加速推理过程
将Pytorch模型转为ONNX作为中间格式;将ONNX文件转为TensorRT引擎(格式包括:FP32、FP16、INT8);使用TensorRT引擎文件进行推理计算。原创 2020-06-12 16:01:48 · 8669 阅读 · 4 评论