Java中float的取值范围为什么是那么大?

float占用4个字节,和int是一样,也就是32bit.
      第1个bit表示符号,0表示正数,1表示负数,这个很好理解,不用多管.
      第2-9个bit表示指数,一共8为(可以表示0-255),这里的底数是2,为了同时表示正数和负数,这里要减去127的偏移量.这样的话范围就是(-127到128),另外全0和全1作为特殊处理,所以直接表示-126到127.
     剩下的23位表示小数部分,这里23位表示了24位的数字,因为有一个默认的前导1(只有二进制才有这个特性).
     最后结果是:(-1)^(sign) * 1.f * 2^(exponent)
     这里:sign是符号位,f是23bit的小数部分,exponent是指数部分,最后表示范围是(因为正负数是对称的,这里只关心正数)
    2^(-126) ~~ 2(1-2^(-24)) * 2^127
    这个还不是float的取值范围,因为标准中还规定了非规格化表示法,另外还有一些特殊规定.
   
非规格化表示:
    当指数部分全0而且小数部分不全0时表示的是非规格化的浮点数,因为这里默认没有前导1,而是0.
    取值位0.f * 2^(-126),表示范围位 2^(-149)~~ (1-2^(-23)) * 2^(-126) 这里没有考虑符号.这里为什么是-126而不是-127? 如果是-127的话,那么最大表示为
2^(-127)-2^(-149),很显然2^(-127) ~~2^(-126) 就没法表示了.
其他特殊表示
    1.当指数部分和小数部分全为0时,表示0值,有+0和-0之分(符号位决定),0×00000000表示正0,0×80000000表示负0.

    2.指数部分全1,小数部分全0时,表示无穷大,有正无穷和负无穷,0x7f800000表示正无穷,0xff800000表示负无穷.
    3.指数部分全1,小数部分不全0时,表示NaN,分为QNaN和SNaN,Java中都是NaN.

结论:
    可以看出浮点数的取值范围是:2^(-149)~~(2-2^(-23))*2^127,也就是Float.MIN_VALUE和Float.MAX_VALUE.

转载自:http://www.mianwww.com/html/2009/11/5914.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值