深度学习
CrazyStoneZw
心中所想,即为世界
展开
-
深度学习最全优化方法总结比较(SGD,Adagrad,Adadelta,Adam,Adamax,Nadam)
前言(标题不能再中二了)本文仅对一些常见的优化方法进行直观介绍和简单的比较,各种优化方法的详细内容及公式只好去认真啃论文了,在此我就不赘述了。SGD此处的SGD指mini-batch gradient descent,关于batch gradient descent, stochastic gradient descent, 以及 mini-batch gradient desce...转载 2018-07-19 10:51:01 · 320 阅读 · 0 评论 -
Windows下安装coco数据集api——pycocotools
实现及环境要求参考开源链接: https://github.com/philferriere/cocoapi原创 2018-07-19 14:32:27 · 4007 阅读 · 0 评论 -
pyqt4 windows可执行文件安装地址
https://www.lfd.uci.edu/~gohlke/pythonlibs/#pyqt4原创 2018-09-09 14:05:41 · 237 阅读 · 0 评论 -
【技术综述】一文道尽“人脸数据集”(转载)
文章首发与微信公众号《与有三学AI》https://mp.weixin.qq.com/s?__biz=MzA3NDIyMjM1NA==&mid=2649030223&idx=1&sn=c6e73f4089e2e7dab0831ed064587134&chksm=87134032b064c924e3304808ded3f9f7dcad5ed687684e52951c...转载 2018-11-22 14:34:42 · 1457 阅读 · 1 评论 -
详解深度学习之经典网络架构(六):ResNet 两代(ResNet v1和ResNet v2)(转载)
一、ResNet v1 一说起“深度学习”,自然就联想到它非常显著的特点“深、深、深”(重要的事说三遍),通过很深层次的网络实现准确率非常高的图像识别、语音识别等能力。因此,我们自然很容易就想到:深的网络一般会比浅的网络效果好,如果要进一步地提升模型的准确率,最直接的方法就是把网络设计得越深越好,这样模型的准确率也就会越来越准确。那现实是这样吗?先看几个经典的图像识别深度学习模型: ...转载 2019-01-28 18:20:07 · 1945 阅读 · 0 评论 -
从Inception v1,v2,v3,v4,RexNeXt到Xception再到MobileNets,ShuffleNet,MobileNetV2,ShuffleNetV2
v1:Going deeper with convolutionsInception v1的网络,主要提出了Inceptionmodule结构(11,33,55的conv和33的pooling组合在一起),最大的亮点就是从NIN(Network in Network)中引入了1*1 conv,结构如下图所示,代表作GoogleNet假设previous layer的大小为2828192,则,...转载 2019-01-30 17:45:10 · 426 阅读 · 0 评论 -
使用tensorflow object detection 现有模型预测
使用tensorflow object detection 现有模型预测一、安装tensorflow1.12.0以上版本二、显示环境安装三、object detection模型引用四、模型准备五、加载固化模型到内存六、加载标签七、识别一、安装tensorflow1.12.0以上版本import numpy as npimport osimport six.moves.urllib as u...原创 2019-09-27 10:10:34 · 407 阅读 · 0 评论