JDK源码阅读之集合篇-HashMap(2)

 接上篇。注意:这里HashMap是使用的JDK8的版本。

1.完成目标

1)HashMap的数据结构和存储结构

 HashMap使用了“数组+链表+红黑树”的数据结构。

 存储结构如下图所示:

HashMap采用了(数组+链表+红黑树)的复杂结构,数组中的每一个元素又称作桶(bin)。

当一个桶中元素个数达到8个,并且桶的个数达到64时,则将这个桶中的链表转化为一颗红黑树。

2)HashMap中主要的属性、主要方法的实现过程

主要属性:


    /**
     * 数组,桶(bins)数组
     */
    transient Node<K,V>[] table;

    /**
     * 条目集
     */
    transient Set<Map.Entry<K,V>> entrySet;

    /**
     * 元素的数量,即桶的个数
     */
    transient int size;

    /**
     * 修改次数,用于在迭代的时候执行快速失败策略
     */
    transient int modCount;

    /**
     * 阈值,表示当桶的数量达到多少时进行扩容,threshold=capacity * loadFactor
     */
    int threshold;

    /**
     * 装载因子
     */
    final float loadFactor;

两个特殊的数据结构:

Node内部类

Node是一个典型的单链表节点,其中,hash用来存储key计算得来的hash值。

static class Node<K,V> implements Map.Entry<K,V> {
        final int hash;
        final K key;
        V value;
        Node<K,V> next;
}

TreeNode内部类

这是一个神奇的类,它继承自LinkedHashMap中的Entry类,关于LInkedHashMap.Entry这个类我们后面再讲。

TreeNode是一个典型的树型节点,其中,prev是链表中的节点,用于在删除元素的时候可以快速找到它的前置节点。

    // 位于HashMap中 
    static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
        TreeNode<K,V> parent;  // red-black tree links
        TreeNode<K,V> left;
        TreeNode<K,V> right;
        TreeNode<K,V> prev;    // needed to unlink next upon deletion
        boolean red;
    }

    // 位于LinkedHashMap中,典型的双向链表节点
    static class Entry<K,V> extends HashMap.Node<K,V> {
        Entry<K,V> before, after;
        Entry(int hash, K key, V value, Node<K,V> next) {
            super(hash, key, value, next);
        }
    }

主要方法及其实现过程:

1.构造方法

 一共有3个构造方法。

   /**
    * 使用默认值构造一个空的HashMap
   */
   public HashMap() {
        this.loadFactor = DEFAULT_LOAD_FACTOR; 
   }
   
   /**
     * 调用HashMap(int initialCapacity, float loadFactor)构造方法,传入默认装载因子
    */
    public HashMap(int initialCapacity) {
        this(initialCapacity, DEFAULT_LOAD_FACTOR);
    }
   
   /**
   * 判断传入的初始容量和装载因子是否合法,并计算扩容门槛,扩容门槛为传入的初始容量往上取最近的
   * 2的n次方
   */
   public HashMap(int initialCapacity, float loadFactor) {
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal initial capacity: " +
                                               initialCapacity);
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal load factor: " +
                                               loadFactor);
        this.loadFactor = loadFactor;
        this.threshold = tableSizeFor(initialCapacity);
    }

    

    

tableSizeFor(int cap)方法

    /**
     * 返回传入容量参数的向上取最近的2的n次方
     */
    static final int tableSizeFor(int cap) {
        int n = cap - 1;
        n |= n >>> 1;
        n |= n >>> 2;
        n |= n >>> 4;
        n |= n >>> 8;
        n |= n >>> 16;
        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
    }

2.添加元素方法put(K key, V value)

    /**
     * 通过hash()函数计算key的hash值,然后调用putVal()执行添加元素
    */
    public V put(K key, V value) {
        return putVal(hash(key), key, value, false, true);
    }
    
    /**
    * 执行添加元素
    */
    final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        Node<K,V>[] tab; Node<K,V> p; int n, i;
        //如果桶数组为空或者桶的大小为0,则先调用resize()进行扩容操作
        if ((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length;
        //如果目标位置的桶为空,则直接将目标元素插入这个桶中
        if ((p = tab[i = (n - 1) & hash]) == null)
            tab[i] = newNode(hash, key, value, null);
        else {
            Node<K,V> e; K k;
            //如果第一个节点就是要找的元素
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;
            //如果第一个节点是树节点,则在树中进行添加元素的操作
            else if (p instanceof TreeNode)
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            else {
                //否则,遍历这个链表,在表中查找key=目标元素key的节点
                for (int binCount = 0; ; ++binCount) {
                    //如果直到链表尾都没有找到该key=目标元素key的节点,则执行插入操作
                    if ((e = p.next) == null) {
                        p.next = newNode(hash, key, value, null);
                        //当执行完插入操作后,如果链表节点数>=8时,则转化为红黑树(树化),这里减一是因为开始的节点没有统计到binCount中
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            treeifyBin(tab, hash);
                        break;
                    }
                    //如果找到key=目标元素key的节点
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    p = e;
                }
            }
            //如果找到
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                //回调接口,在LinkedHashMap中用到
                afterNodeAccess(e);
                return oldValue;
            }
        }
        //到这里了说明没有找到元素
        ++modCount;
        if (++size > threshold)
            resize();
        afterNodeInsertion(evict);
        return null;
    }

(1)通过hash()函数计算key的hash值,然后调用putVal()执行添加元素

(2)如果桶数组为空或者桶的大小为0,则先调用resize()进行扩容操作

(3)判断目标位置的桶是否为空,如果为空,则直接将节点插入这个桶中

(4)判断第一个节点是否是要找的节点

(5)判断第一个节点是否是树节点,如果是,则在红黑树中执行添加元素的操作

(6)如果前两种情况都不满足,则在链表中执行添加元素的操作

(7)如果找到了对应key的元素,则判断是否需要替换旧值,并直接返回旧值

(8)如果插入了元素,则数量加1并判断是否需要扩容

扩容方法resize()

    /**
    * 初始化桶数组或者容量加倍
    */
    final Node<K,V>[] resize() {
        Node<K,V>[] oldTab = table;
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
        int oldThr = threshold;
        int newCap, newThr = 0;
        if (oldCap > 0) {
            // 如果桶数组的容量已经达到最大容量2^30就不再增大
            if (oldCap >= MAXIMUM_CAPACITY) {
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
            // 否则,桶容量和桶容量阈值加倍
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                     oldCap >= DEFAULT_INITIAL_CAPACITY)
                newThr = oldThr << 1; // double threshold
        }
        else if (oldThr > 0) // initial capacity was placed in threshold
            newCap = oldThr;
        else {               // zero initial threshold signifies using defaults
            newCap = DEFAULT_INITIAL_CAPACITY;
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        if (newThr == 0) {
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                      (int)ft : Integer.MAX_VALUE);
        }
        threshold = newThr;
        @SuppressWarnings({"rawtypes","unchecked"})
            Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
        table = newTab;
        // 如果旧的桶数组不空,则开始迁移元素操作
        if (oldTab != null) {
            // 循环遍历每一个桶数组元素
            for (int j = 0; j < oldCap; ++j) {
                Node<K,V> e;
                if ((e = oldTab[j]) != null) {
                    oldTab[j] = null;
                    // 如果是该桶数组元素中只有一个节点,则直接进行迁移
                    if (e.next == null)
                        newTab[e.hash & (newCap - 1)] = e;
                    // 如果该节点是树节点,则需要进行相应的切分,将一颗树打散到两颗树到新桶中
                    else if (e instanceof TreeNode)
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                    else { // preserve order
                        Node<K,V> loHead = null, loTail = null;
                        Node<K,V> hiHead = null, hiTail = null;
                        Node<K,V> next;
                        do {
                            next = e.next;
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;
    }

TreeNode.putTreeVal(…)方法

将元素插入到红黑树中的方法。

        final TreeNode<K,V> putTreeVal(HashMap<K,V> map, Node<K,V>[] tab,
                                       int h, K k, V v) {
            Class<?> kc = null;
            boolean searched = false;
            TreeNode<K,V> root = (parent != null) ? root() : this;
            for (TreeNode<K,V> p = root;;) {
                int dir, ph; K pk;
                if ((ph = p.hash) > h)
                    dir = -1;
                else if (ph < h)
                    dir = 1;
                else if ((pk = p.key) == k || (k != null && k.equals(pk)))
                    return p;
                else if ((kc == null &&
                          (kc = comparableClassFor(k)) == null) ||
                         (dir = compareComparables(kc, k, pk)) == 0) {
                    if (!searched) {
                        TreeNode<K,V> q, ch;
                        searched = true;
                        if (((ch = p.left) != null &&
                             (q = ch.find(h, k, kc)) != null) ||
                            ((ch = p.right) != null &&
                             (q = ch.find(h, k, kc)) != null))
                            return q;
                    }
                    dir = tieBreakOrder(k, pk);
                }

                TreeNode<K,V> xp = p;
                if ((p = (dir <= 0) ? p.left : p.right) == null) {
                    Node<K,V> xpn = xp.next;
                    TreeNode<K,V> x = map.newTreeNode(h, k, v, xpn);
                    if (dir <= 0)
                        xp.left = x;
                    else
                        xp.right = x;
                    xp.next = x;
                    x.parent = x.prev = xp;
                    if (xpn != null)
                        ((TreeNode<K,V>)xpn).prev = x;
                    moveRootToFront(tab, balanceInsertion(root, x));
                    return null;
                }
            }
        }

(1)寻找根节点;

(2)从根节点开始查找;

(3)比较hash值及key值,如果都相同,直接返回,在putVal()方法中决定是否要替换value值;

(4)根据hash值及key值确定在树的左子树还是右子树查找,找到了直接返回;

(5)如果最后没有找到则在树的相应位置插入元素,并做平衡;

treeifyBin()方法

如果插入元素后链表的长度大于等于8则判断是否需要树化。

    /**
    * 将链表进行树化
    */
    final void treeifyBin(Node<K,V>[] tab, int hash) {
        int n, index; Node<K,V> e;
        // 如果桶数组为空或者桶数组的长度小于64则只进行扩容
        if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
            resize();
        else if ((e = tab[index = (n - 1) & hash]) != null) {
            TreeNode<K,V> hd = null, tl = null;
            do {
                // 遍历,将链表中的节点替换为树节点
                TreeNode<K,V> p = replacementTreeNode(e, null);
                if (tl == null)
                    hd = p;
                else {
                    p.prev = tl;
                    tl.next = p;
                }
                tl = p;
            } while ((e = e.next) != null);
            // 替换完成后,从头节点开始树化
            if ((tab[index] = hd) != null)
                hd.treeify(tab);
        }
    }

TreeNode.treeify()方法

真正树化的方法。

        final void treeify(Node<K,V>[] tab) {
            TreeNode<K,V> root = null;
            for (TreeNode<K,V> x = this, next; x != null; x = next) {
                next = (TreeNode<K,V>)x.next;
                x.left = x.right = null;
                // 第一个元素作为根节点且为黑节点,其它元素依次插入到树中再做平衡
                if (root == null) {
                    x.parent = null;
                    x.red = false;
                    root = x;
                }
                else {
                    K k = x.key;
                    int h = x.hash;
                    Class<?> kc = null;
                    // 从根节点查找元素插入的位置
                    for (TreeNode<K,V> p = root;;) {
                        int dir, ph;
                        K pk = p.key;
                        if ((ph = p.hash) > h)
                            dir = -1;
                        else if (ph < h)
                            dir = 1;
                        else if ((kc == null &&
                                  (kc = comparableClassFor(k)) == null) ||
                                 (dir = compareComparables(kc, k, pk)) == 0)
                            dir = tieBreakOrder(k, pk);
                        // 如果最后没找到元素,则插入
                        TreeNode<K,V> xp = p;
                        if ((p = (dir <= 0) ? p.left : p.right) == null) {
                            x.parent = xp;
                            if (dir <= 0)
                                xp.left = x;
                            else
                                xp.right = x;
                            // 插入后平衡,默认插入的是红节点,在balanceInsertion()方法里
                            root = balanceInsertion(root, x);
                            break;
                        }
                    }
                }
            }
            // 把根节点移动到链表的头节点,因为经过平衡之后原来的第一个元素不一定是根节点了
            moveRootToFront(tab, root);
        }

(1)从链表的第一个元素开始遍历

(2)将第一个元素作为根节点

(3)其它元素依次插入到红黑树中,再做平衡

(4)将根节点移到链表第一元素的位置(因为平衡的时候根节点会改变)

3.根据key取得元素方法get(Object key)

    public V get(Object key) {
        Node<K,V> e;
        return (e = getNode(hash(key), key)) == null ? null : e.value;
    }

    /**
     * Implements Map.get and related methods
     */
    final Node<K,V> getNode(int hash, Object key) {
        Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (first = tab[(n - 1) & hash]) != null) {
            // 判断第一个节点是不是目标节点,如果是,则直接返回
            if (first.hash == hash && // always check first node
                ((k = first.key) == key || (key != null && key.equals(k))))
                return first;
            if ((e = first.next) != null) {
                // 如果第一个节点是树节点,则在树节点中执行查找
                if (first instanceof TreeNode)
                    return ((TreeNode<K,V>)first).getTreeNode(hash, key);
                // 否则,遍历链表节点,进行查找
                do {
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        return e;
                } while ((e = e.next) != null);
            }
        }
        return null;
    }

1.首先通过计算hash(key)得到桶的位置

2.判断桶的第一个节点是不是目标节点,如果是,则直接返回

3.如果不是,则判断第一个节点是不是树节点,如果是,则在树节点中执行查找

4.否则,遍历链表节点,进行查找

TreeNode.getTreeNode(int h, Object k)方法

        final TreeNode<K,V> getTreeNode(int h, Object k) {
            // 从树的根节点开始查找
            return ((parent != null) ? root() : this).find(h, k, null);
        }

        final TreeNode<K,V> find(int h, Object k, Class<?> kc) {
            TreeNode<K,V> p = this;
            do {
                int ph, dir; K pk;
                TreeNode<K,V> pl = p.left, pr = p.right, q;
                if ((ph = p.hash) > h)
                    // 左子树
                    p = pl;
                else if (ph < h)
                    // 右子树
                    p = pr;
                else if ((pk = p.key) == k || (k != null && k.equals(pk)))
                    return p;
                else if (pl == null)
                    // hash相同但key不同,左子树为空查右子树
                    p = pr;
                else if (pr == null)
                    // 右子树为空查左子树
                    p = pl;
                else if ((kc != null ||
                          (kc = comparableClassFor(k)) != null) &&
                         (dir = compareComparables(kc, k, pk)) != 0)
                    p = (dir < 0) ? pl : pr;
                else if ((q = pr.find(h, k, kc)) != null)
                    return q;
                else
                    p = pl;
            } while (p != null);
            return null;
        }

经典二叉查找树的查找过程,先根据hash值比较,再根据key值比较决定是查左子树还是右子树。

4.根据key删除元素方法remove(Object key)

    public V remove(Object key) {
        Node<K,V> e;
        return (e = removeNode(hash(key), key, null, false, true)) == null ?
            null : e.value;
    }

    final Node<K,V> removeNode(int hash, Object key, Object value,
                               boolean matchValue, boolean movable) {
        Node<K,V>[] tab; Node<K,V> p; int n, index;
        // 如果对应的桶数组不为空,则在该桶数组元素中寻找满足key=要删除的key的节点
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (p = tab[index = (n - 1) & hash]) != null) {
            Node<K,V> node = null, e; K k; V v;
            // 如果是第一个节点
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                node = p;
            else if ((e = p.next) != null) {
                // 如果是树节点
                if (p instanceof TreeNode)
                    node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
                // 如果是链表节点
                else {
                    do {
                        if (e.hash == hash &&
                            ((k = e.key) == key ||
                             (key != null && key.equals(k)))) {
                            node = e;
                            break;
                        }
                        p = e;
                    } while ((e = e.next) != null);
                }
            }
            // 如果找到了
            if (node != null && (!matchValue || (v = node.value) == value ||
                                 (value != null && value.equals(v)))) {
                // 如果是树节点
                if (node instanceof TreeNode)
                    ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
                // 如果是链表的第一个节点
                else if (node == p)
                    tab[index] = node.next;
                // 如果是链表中剩下的其他节点
                else
                    p.next = node.next;
                ++modCount;
                --size;
                afterNodeRemoval(node);
                return node;
            }
        }
        return null;
    }

(1)先查找元素所在的节点

(2)如果找到的节点是树节点,则按树的移除节点处理

(3)如果找到的节点是桶中的第一个节点,则把第二个节点移到第一的位置

(4)否则按链表删除节点处理

(5)修改size,调用移除节点后置处理等

TreeNode.removeTreeNode(…)方法

        final void removeTreeNode(HashMap<K,V> map, Node<K,V>[] tab,
                                  boolean movable) {
            int n;
            if (tab == null || (n = tab.length) == 0)
                return;
            int index = (n - 1) & hash;
            TreeNode<K,V> first = (TreeNode<K,V>)tab[index], root = first, rl;
            TreeNode<K,V> succ = (TreeNode<K,V>)next, pred = prev;
            if (pred == null)
                tab[index] = first = succ;
            else
                pred.next = succ;
            if (succ != null)
                succ.prev = pred;
            if (first == null)
                return;
            if (root.parent != null)
                root = root.root();
            if (root == null || root.right == null ||
                (rl = root.left) == null || rl.left == null) {
                tab[index] = first.untreeify(map);  // too small
                return;
            }
            TreeNode<K,V> p = this, pl = left, pr = right, replacement;
            if (pl != null && pr != null) {
                TreeNode<K,V> s = pr, sl;
                while ((sl = s.left) != null) // find successor
                    s = sl;
                boolean c = s.red; s.red = p.red; p.red = c; // swap colors
                TreeNode<K,V> sr = s.right;
                TreeNode<K,V> pp = p.parent;
                if (s == pr) { // p was s's direct parent
                    p.parent = s;
                    s.right = p;
                }
                else {
                    TreeNode<K,V> sp = s.parent;
                    if ((p.parent = sp) != null) {
                        if (s == sp.left)
                            sp.left = p;
                        else
                            sp.right = p;
                    }
                    if ((s.right = pr) != null)
                        pr.parent = s;
                }
                p.left = null;
                if ((p.right = sr) != null)
                    sr.parent = p;
                if ((s.left = pl) != null)
                    pl.parent = s;
                if ((s.parent = pp) == null)
                    root = s;
                else if (p == pp.left)
                    pp.left = s;
                else
                    pp.right = s;
                if (sr != null)
                    replacement = sr;
                else
                    replacement = p;
            }
            else if (pl != null)
                replacement = pl;
            else if (pr != null)
                replacement = pr;
            else
                replacement = p;
            if (replacement != p) {
                TreeNode<K,V> pp = replacement.parent = p.parent;
                if (pp == null)
                    root = replacement;
                else if (p == pp.left)
                    pp.left = replacement;
                else
                    pp.right = replacement;
                p.left = p.right = p.parent = null;
            }

            TreeNode<K,V> r = p.red ? root : balanceDeletion(root, replacement);

            if (replacement == p) {  // detach
                TreeNode<K,V> pp = p.parent;
                p.parent = null;
                if (pp != null) {
                    if (p == pp.left)
                        pp.left = null;
                    else if (p == pp.right)
                        pp.right = null;
                }
            }
            if (movable)
                moveRootToFront(tab, r);
        }

(1)TreeNode本身既是链表节点也是红黑树节点

(2)先删除链表节点

(3)再删除红黑树节点并做平衡

总结

(1)HashMap是一种散列表,采用(数组 + 链表 + 红黑树)的存储结构;

(2)HashMap的默认初始容量为16(1<<4),默认装载因子为0.75f,容量总是2的n次方;

(3)HashMap扩容时每次容量变为原来的两倍;

(4)当桶的数量小于64时不会进行树化,只会扩容;

(5)当桶的数量大于64且单个桶中元素的数量大于8时,进行树化;

(6)当单个桶中元素数量小于6时,进行反树化;

(7)HashMap是非线程安全的容器;

还有一篇回答问题篇,嘿嘿~~

参考:https://blog.csdn.net/tangtong1/article/details/88934809

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值