题目描述
某景区有一条长空栈道,许多游客在栈道上欣赏风景。因为这条长空栈道十分狭窄,只能容纳1个人通过。突然,天象异变,暴风雨正向景区袭来!为了安全,所有游客必须撤下栈道。栈道的长度为L,游客们最开始呆在坐标为整数的地方。所有游客的速度都为1,一旦一个游客某一时刻来到了坐标为0或L+1的位置,他就离开了栈道。每个游客都有一个初始面对的方向,他们会以匀速朝着这个方向行走,中途不会主动改变方向。但是,如果两个游客面对面相遇,他们无法彼此通过对方,于是就分别转身,继续行走。转身不需要任何的时间。由于暴风雨即将来袭,管理人员已不能控制游客。甚至,连每个游客初始面对的方向都不知道。为了安全,管理人员想要知道最少需要多少时间游客就可能全部撤离栈道。另外,为了安全以防万一,因此还需要知道最多需要多少时间才能全部撤离栈道。
输入描述
第一行共一个整数L,表示栈道的长度。桥上的坐标为1,2,⋯,L。
第二行共一个整数N,表示初始时留在栈道上的游客数目。
第三行共有N个整数,分别表示每个游客的初始坐标。
输出描述
共一行,输出2个整数,分别表示游客撤离栈道的最小时间和最大时间。2个整数由一个空格符分开。
样例1
输入
4 2 1 3
输出
2 4
提示
对于100%的数据,满足初始时,没有两个游客同在一个坐标,1≤L≤5000,0≤N≤5000,且数据保证N≤L。
#include <iostream>
using namespace std;
int a[5011],l,n,maxn=0,minn=0;
int main() {
cin>>l>>n;
for(int i=1;i<=n;i++){
cin>>a[i];
maxn=max(maxn,max(l+1-a[i],a[i]));
minn=max(minn,min(l+1-a[i],a[i]));
}
cout<<minn<<" "<<maxn;
return 0;
}