Python pandas 删除指定行/列数据

pandas 同时被 2 个专栏收录
24 篇文章 1 订阅
45 篇文章 0 订阅

1.滤除缺失数据dropna()

import pandas as pd
import numpy as np
df=pd.DataFrame({"record":[np.nan,"亚健康|潘光|45岁","疾病|张思",np.nan],"date":[np.nan,20210102,20210103,20210104]},index=["one","two","three","four"])

在这里插入图片描述

1)滤除含有NaN值的所有行

df.dropna()#默认axis=0

在这里插入图片描述

2)滤除含有NaN值的所有列

df.dropna(axis=1)

在这里插入图片描述

3)滤除元素都是NaN值的行

df.dropna(axis=0,how="all")

在这里插入图片描述

4)滤除元素都是NaN值的列

在这里插入图片描述

5)滤除指定列中含有缺失的行

df.dropna(subset=["record"],axis=0)

在这里插入图片描述
以上如果需要在原数据上直接做更改,需设置参数inplace=True

2.删除重复值 drop_duplicates()

df=pd.DataFrame({'state':[1,1,2,2,1,2,2],'pop':['a','b','c','d','b','c','d']})

在这里插入图片描述

语法:drop_duplicates(subset,keep,inplace),其中参数 keep:{‘first’,‘last’,False},默认’first’

  • first:保留第一次出现的重复项,删除第二次及之后出现的重复项。

  • last:保留最后一次出现的重复项,删除之前出现的重复项。

  • "false":删除所有重复项。

1)keep=“first”

df.drop_duplicates(keep="first")

在这里插入图片描述

2)keep=“last”

df.drop_duplicates(keep="last")

在这里插入图片描述

3)keep=False

df.drop_duplicates(keep=False)

在这里插入图片描述
4)删除指定列中重复项对应的行

df.drop_duplicates(subset=["state"],keep="first")

在这里插入图片描述
以上如果需要在原数据上直接做更改,需设置参数inplace=True

3.根据指定条件删除行列drop()

df=pd.DataFrame(np.arange(16).reshape(4,4),columns=["one","two","three","four"])

在这里插入图片描述
1).删除指定列

df.drop(["one"],axis=1)

在这里插入图片描述
另外,也可通过del df["one"]来实现删除指定列,但该方法不推荐,因为这默认直接在源数据上做更改。

2).删除指定行

df.drop([0],axis=0)

在这里插入图片描述
以上如果需要在原数据上直接做更改,需设置参数inplace=True

评论 1 您还未登录,请先 登录 后发表或查看评论
©️2022 CSDN 皮肤主题:大白 设计师:CSDN官方博客 返回首页

打赏作者

永远在减肥永远110的的小潘

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值