阻塞棉花糖
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
19、基于树莓派和MaixDuino的机器学习硬件组件与故障排除
本文介绍了基于树莓派和MaixDuino的机器学习项目所需的核心硬件组件,包括跳线、电阻、LED、晶体管、传感器和超声波测距仪等,并详细说明了各类组件的使用方法与连接方式。文章还涵盖了面包板搭建电路的技巧、常见组装错误及解决方法,提供了DHT-11温湿度监测和人脸识别等应用示例,并给出了组件购买渠道建议。通过软硬件结合,助力开发者在物联网和边缘计算领域实现创新项目。原创 2025-09-23 10:38:21 · 21 阅读 · 0 评论 -
18、机器学习与神经形态芯片:从实践到未来展望
本文探讨了机器学习在电子元件识别中的实践应用与优化方法,介绍了YOLO多目标检测架构的原理与训练挑战,并深入分析了从传统冯·诺依曼架构向神经形态芯片演进的技术路径。文章详细阐述了神经形态芯片的结构特点、发展现状、技术挑战及未来趋势,对比其与传统计算机在处理智能任务上的优势,展示了其在机器人、自动驾驶、医疗等领域的广泛应用前景。同时,文章还探讨了该技术面临的性能、制造、编程和能耗等挑战,并提出了相应的解决方案,展望了神经形态芯片在未来人工智能发展中的关键作用。原创 2025-09-22 09:46:58 · 29 阅读 · 0 评论 -
17、机器学习中的面部识别、模型训练与应用
本文介绍了机器学习在面部识别、身份识别、性别与年龄估计以及自定义模型训练中的实现方法与应用场景。通过树莓派和MaixDuino平台,详细讲解了从数据采集、模型训练到实际部署的完整流程,并展示了在生物识别开门、智能家居、安防监控和商业营销等领域的应用潜力。同时探讨了当前面临的挑战,如数据收集、模型性能与隐私安全,并展望了多模态融合、边缘计算和AIoT等未来发展趋势。原创 2025-09-21 14:44:49 · 20 阅读 · 0 评论 -
16、基于Python的面部识别与身份识别技术
本文介绍了基于Python的面部识别与身份识别技术,涵盖使用MaixDuino进行人脸检测、人数统计和警报触发的应用,以及利用OpenCV实现面部、眼睛和微笑检测的方法。文章还探讨了面部识别与身份识别的区别及其引发的社会隐私问题,展示了在安防、考勤、门禁等领域的实际应用案例,并分析了未来技术发展趋势,包括更高的准确性、多模态融合、隐私保护和智能化发展。原创 2025-09-20 09:14:46 · 16 阅读 · 0 评论 -
15、人工智能中的语音与面部识别技术
本文深入探讨了人工智能中的语音与面部识别技术,涵盖聊天机器人的发展、语音输出的实际应用(如‘会说话的眼睛’和‘人工智能蝙蝠’)、面部检测与识别的区别及其技术原理。文章介绍了基于Raspberry Pi的硬件实现方法、eSpeak语音合成、超声波距离测量代码,并详细解析了面部识别中的特征脸(Eigenfaces)算法、Gabor滤波器、PCA等核心技术。同时,讨论了OpenCV、Dlib等开源库的应用,分析了面部识别在安防、商业、增强现实等领域的使用场景及隐私风险,提出了多模态识别、情感识别等未来趋势,并强调原创 2025-09-19 13:48:43 · 24 阅读 · 0 评论 -
14、基于树莓派的语音交互与聊天机器人技术探索
本文详细探讨了基于树莓派的语音交互与聊天机器人技术,涵盖语音输出(eSpeak-NG)、语音输入设备配置、语音识别(使用Google API)、聊天机器人逻辑设计及GPIO硬件控制等内容。通过构建会说话的气象站和语音控制的家庭自动化系统,展示了树莓派在智能语音应用中的强大潜力。文章还提供了系统搭建流程、常见问题解决方案以及智能家居、健康监测等拓展应用场景,为开发者和爱好者提供了完整的实践指南和技术展望。原创 2025-09-18 15:18:00 · 18 阅读 · 0 评论 -
13、机器视觉与语音交互:从物体识别到语音交流
本文深入探讨了机器视觉与语音交互技术的发展与应用。从基于TensorFlow的衣物分类模型构建,到MaixDuino实现20类物体识别及LED控制的实际部署,展示了物体识别在嵌入式系统中的实现路径。同时,回顾了语音合成与识别的历史演进,分析了当前语音识别面临的挑战与突破,并介绍了Raspberry Pi上的语音输出实现方法。文章进一步提出将语音指令与物体识别结合的智能系统示例,展望了多模态融合、个性化定制、边缘计算和跨领域应用等未来趋势,描绘了智能化人机交互的广阔前景。原创 2025-09-17 13:18:13 · 14 阅读 · 0 评论 -
12、利用Python进行机器学习:手写数字识别与目标识别
本文介绍了如何利用Python进行手写数字识别和目标识别。内容涵盖MNIST数据集的预处理与卷积网络应用,MaixDuino开发板上的实时数字识别实现,以及基于TensorFlow Lite在Raspberry Pi上进行目标识别的完整流程。同时探讨了衣物分类、模型训练超参数配置、技术对比与应用场景拓展,并展望了未来在准确率、实时性、多模态融合等方面的发展趋势。原创 2025-09-16 16:38:05 · 23 阅读 · 0 评论 -
11、手写数字识别技术全解析
本文全面解析了手写数字识别技术,涵盖从数据准备、环境搭建、模型训练到实际应用的完整流程。基于MNIST数据集和KERAS框架,结合卷积神经网络(ConvNet)实现高精度识别,并支持在树莓派上通过PiCam进行实时图像识别。文章详细介绍了系统搭建步骤、性能优化策略及实际应用场景,如仪表读数、车牌识别等,同时提供了Python代码示例与流程图,帮助读者快速掌握并部署手写数字识别系统。原创 2025-09-15 10:33:09 · 19 阅读 · 0 评论 -
10、Python 机器学习:从鸢尾花分类到手写数字识别
本文介绍了使用Python进行机器学习的两个经典案例:鸢尾花分类和手写数字识别。从模型构建、训练、评估到优化,详细讲解了多层感知器(MLP)和神经网络的应用方法,并探讨了交叉验证、数据增强、学习率调整及CNN等优化策略。同时展示了模型在植物学、银行票据处理等领域的实际应用,最后通过流程图总结了完整的机器学习流程,为初学者和实践者提供了系统性的指导。原创 2025-09-14 09:13:53 · 27 阅读 · 0 评论 -
9、机器学习实用指南:从理论到实践
本文深入探讨了机器学习从理论到实践的关键技术与最佳实践,涵盖知识迁移与模型保存、神经网络结构的图形化表示、使用KERAS解决XOR问题、虚拟环境的搭建与管理,并以鸢尾花分类为例详细演示了数据加载、预处理、模型训练与评估的完整流程。文章还介绍了模型调参、可解释性、交叉验证及模型保存等高级主题,结合流程图和代码示例,帮助读者系统掌握机器学习项目开发的核心方法。原创 2025-09-13 09:12:45 · 25 阅读 · 0 评论 -
8、Python机器学习中的实用库介绍
本文全面介绍了Python在机器学习领域中常用的实用库,涵盖从数据处理、数学计算到图像处理和深度学习的完整技术栈。详细讲解了NumPy在高效数组运算中的优势,Pandas在数据清洗与分析中的强大功能,SciPy与SkImage在科学计算和图像处理中的应用,OpenCV在机器视觉与视频处理中的实践,以及Keras和TensorFlow在构建深度学习模型方面的核心作用。同时提供了Jupyter中图形输出的设置方法,并通过丰富的代码示例和流程图帮助读者理解各库的使用场景与协作方式,是Python机器学习入门与实践原创 2025-09-12 09:42:43 · 18 阅读 · 0 评论 -
7、Python机器学习与常用库使用指南
本文介绍了Python在机器学习中的基础应用与常用库的使用方法,涵盖运行时间测量、数学计算、硬件控制(如MaixDuino和树莓派GPIO)、变量与数据类型、数组操作、运算符、条件循环结构、异常处理等内容。重点讲解了MatPlotLib绘图库的安装与图形绘制技巧,包括2D/3D图表和多子图布局,并强调了虚拟环境在管理库版本兼容性中的重要性。最后通过综合示例展示了硬件控制与数据可视化的结合应用,为开展Python机器学习项目提供了全面的入门指导。原创 2025-09-11 12:04:40 · 15 阅读 · 0 评论 -
6、编程开发环境与Python基础入门
本文介绍了Python编程的基础知识与常用开发环境,涵盖Jupyter Notebook和Spyder的使用方法、库的可用性检查与安装方式、Python与MicroPython的特点对比,以及注释、输出、缩进、时间控制等编程要点。同时展示了如何在MaixDuino上输出信息,并通过综合示例演示倒计时程序的实现。文章还提供了代码运行时间的测量方法,帮助开发者优化性能。适合初学者快速入门Python及嵌入式系统开发。原创 2025-09-10 09:55:23 · 19 阅读 · 0 评论 -
5、Python 机器学习开发环境与工具使用指南
本文详细介绍了基于MaixDuino的Python机器学习开发环境搭建与工具使用,涵盖固件下载与烧录、kflash工具操作、.kmodel与.kfpkg模型格式的加载方式、Anaconda环境配置、Jupyter Notebook的安装与使用技巧,并深入讲解了交互式开发模式、内核管理及与MicroPython设备的通信方法。通过综合示例和流程图,帮助开发者快速构建高效的AI开发工作流。原创 2025-09-09 16:58:33 · 20 阅读 · 0 评论 -
4、Python编程开发环境介绍
本文介绍了Python编程开发中常用的集成开发环境(IDE),重点讲解了Thonny和MaixPy IDE的安装、配置、使用方法及常见问题解决。Thonny适合初学者和中级用户,支持树莓派和MaixDuino开发,具备代码编辑、文件管理和实时终端功能;MaixPy IDE专为MaixDuino设计,支持MicroPython语法并可实时查看相机图像。文章还提供了开发流程示例、错误排查建议及注意事项,帮助开发者高效开展Python项目开发。原创 2025-09-08 16:12:03 · 17 阅读 · 0 评论 -
3、树莓派与MaixDuino:小型硬件的强大力量
本文介绍了树莓派4和MaixDuino两款小型硬件平台的特点与应用。树莓派凭借强大的计算能力和丰富的接口,适用于多种复杂项目,尤其在机器学习和图形处理方面表现优异;而MaixDuino以低成本和专用KPU(知识处理单元)在AIoT、图像与音频处理领域展现独特优势。文章详细对比了二者在性能、内存、电源、应用场景等方面的差异,并提供了远程控制、文件传输、散热优化、电源管理等实用技巧,同时展示了开发流程及未来发展趋势,为开发者选择合适平台提供全面参考。原创 2025-09-07 09:40:24 · 23 阅读 · 0 评论 -
2、机器学习与人工智能:从历史到实践的全面解析
本文全面回顾了人工智能与机器学习的发展历程,从早期的ELIZA程序、专家系统到AlphaGo战胜围棋冠军,探讨了关键技术突破与重大挑战,如异或问题对神经网络发展的阻碍。文章深入解析了机器学习与深度学习的区别,强调了数据类型、规模、硬件条件等在方法选择中的作用,并介绍了PC、Raspberry Pi和Sipeed MaixDuino等不同硬件平台在实际项目中的应用与性能对比。同时,文章展望了人工智能在可解释性、安全性、可靠性等方面的未来挑战与发展前景,强调其在智能医疗、交通、家居等领域的广泛潜力。原创 2025-09-06 11:58:55 · 15 阅读 · 0 评论 -
1、人工智能与机器学习:概念、学习方法与类型解析
本文深入解析了人工智能与机器学习的核心概念,介绍了弱人工智能、强人工智能与超级智能的三个发展阶段,并详细阐述了机器学习的四种主要算法类型:监督学习、无监督学习、半监督学习和强化学习。文章还展示了机器学习的实际应用流程、关键步骤以及未来发展的挑战与机遇,涵盖数据隐私、模型可解释性、计算资源需求和伦理问题,同时探讨了跨领域融合、边缘计算、自动化机器学习和量子计算带来的新前景。原创 2025-09-05 14:07:41 · 12 阅读 · 0 评论