2. 快速在Spring Boot中集成Spring AI

1. 序言

随着Spring Boot的流行,越来越多的开发者选择利用其快速开发和简化配置的优势,构建企业级应用。Spring Boot通过自动化配置和高度的模块化,使得开发者可以更快速地实现业务功能。而Spring AI作为Spring生态的一部分,提供了与人工智能技术结合的能力,可以帮助开发者轻松将AI能力集成到Spring Boot项目中。
本篇文章将引导你如何在Spring Boot中快速集成Spring AI,并通过简单的示例实现AI功能。示例使用Spring AI集成硅基流动API进行演示。需要先申请硅基流动相关API密钥,传送门: 《硅基流动调用 DeepSeek-V3 & R1:5 分钟快速上手指南》

2. 环境准备

我这里所准备的环境:
  • Java 17 或更高版本:Spring Boot和Spring AI都依赖于Java 17及更高版本。
  • Spring Boot 3.x:Spring AI支持Spring Boot 3.2.x和3.3.x。
  • 集成的AI服务:我们将集成OpenAI的API来展示如何使用Spring AI进行智能对话,这里使用硅基流动API演示。

3. 创建Spring Boot项目

首先,使用Spring Initializr快速创建一个Spring Boot项目。具体创建步骤这里省略,Springboot版本选用3.2.x以上版本,这里选择3.4.2。

3.1. 添加依赖

添加Springboot和Spring ai相关依赖。我们集成spring-ai-bom作为依赖版本管理,截止书写这边文章时,该以来版本为1.0.0-SNAPSHOT。可参考:
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>
    <parent>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-parent</artifactId>
        <version>3.4.2</version>
        <relativePath/> <!-- lookup parent from repository -->
    </parent>
    <groupId>org.example</groupId>
    <artifactId>springboot-ai</artifactId>
    <version>0.0.1-SNAPSHOT</version>
    <name>springboot-ai</name>
    <description>springboot-ai</description>
    <properties>
        <java.version>17</java.version>
    </properties>

    <repositories>
        <repository>
            <id>spring-milestones</id>
            <name>Spring Milestones</name>
            <url>https://repo.spring.io/milestone</url>
            <snapshots>
                <enabled>false</enabled>
            </snapshots>
        </repository>
        <repository>
            <id>spring-snapshots</id>
            <name>Spring Snapshots</name>
            <url>https://repo.spring.io/snapshot</url>
            <releases>
                <enabled>false</enabled>
            </releases>
        </repository>
    </repositories>

    <dependencies>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter</artifactId>
        </dependency>

        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-test</artifactId>
            <scope>test</scope>
        </dependency>

        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-web</artifactId>
        </dependency>

        <!-- Spring Boot DevTools (Optional for auto-reloading during development) -->
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-devtools</artifactId>
            <scope>runtime</scope>
        </dependency>

        <dependency>
            <groupId>org.springframework.ai</groupId>
            <artifactId>spring-ai-openai-spring-boot-starter</artifactId>
        </dependency>
        <dependency>
            <groupId>org.springframework.ai</groupId>
            <artifactId>spring-ai-spring-boot-autoconfigure</artifactId>
        </dependency>
    </dependencies>

    <dependencyManagement>
        <dependencies>
            <dependency>
                <groupId>org.springframework.ai</groupId>
                <artifactId>spring-ai-bom</artifactId>
                <version>1.0.0-SNAPSHOT</version>
                <type>pom</type>
                <scope>import</scope>
            </dependency>
        </dependencies>
    </dependencyManagement>

    <build>
        <plugins>
            <plugin>
                <groupId>org.springframework.boot</groupId>
                <artifactId>spring-boot-maven-plugin</artifactId>
            </plugin>
        </plugins>
    </build>

</project>
这里只需要关注两个核心依赖:
<!-- 封装了各大模型的交互接口 -->
<dependency>
    <groupId>org.springframework.ai</groupId>
    <artifactId>spring-ai-openai-spring-boot-starter</artifactId>
</dependency>
<!-- 用于各大模型进行自动装配 -->
<dependency>
    <groupId>org.springframework.ai</groupId>
    <artifactId>spring-ai-spring-boot-autoconfigure</artifactId>
</dependency>

3.2. 配置API密钥

为了能够调用OpenAI API,我们需要配置一个API密钥。这里选用硅基流动API密钥。你也可以通过openai官网注册。
在application.properties中添加API密钥配置:
spring.application.name=springboot-ai
# 硅基流动API接口,默认为openai.com地址
spring.ai.openai.base-url=https://api.siliconflow.cn
# 这里是openai的api密钥
spring.ai.openai.api-key=sk-**************
# 模型名称,这里选用deepseek-V3模型。你也可以选用Qwen或GPT
spring.ai.openai.chat.options.model=deepseek-ai/DeepSeek-V3
#spring.ai.openai.chat.options.responseFormat.type=json_object

3.3. 编写交互类

到此,以上简单几步就已经把Springboot和Spring ai快速集成起来了。这里编写交互类,来具体调用大模型接口:
package org.example.springbootai;

import org.springframework.ai.chat.messages.UserMessage;
import org.springframework.ai.chat.model.ChatResponse;
import org.springframework.ai.chat.prompt.Prompt;
import org.springframework.ai.openai.OpenAiChatModel;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;
import reactor.core.publisher.Flux;

import java.util.Map;

@RestController
public class ChatController {

    private final OpenAiChatModel chatModel;

    @Autowired
    public ChatController(OpenAiChatModel chatModel) {
        this.chatModel = chatModel;
    }


    /**
     * 这里简单实现一个接口,让用户输入一个prompt,然后返回一个结果。prompt输入一个指令,让他给我们讲个笑话
     * @param message
     * @return
     */
    @GetMapping("/ai/generate")
    public Map<String,String> generate(@RequestParam(value = "message", defaultValue = "讲个笑话") String message) {
        return Map.of("generation", this.chatModel.call(message));
    }
}

3.4. 创建启动类

@SpringBootApplication
public class AiApplication {

    public static void main(String[] args) {
        SpringApplication.run(AiApplication.class, args);
    }

}

3.5 测试与运行

到此,Springboot和Spring ai的集成已经结束了。我们运行AiApplication后,访问地址: http://localhost:8080/ai/generate。可以看到浏览器成功返回了大模型基于我们的prompt返回的文本内容:

4. 小结

本篇文章,我们展示了如何在Spring Boot项目中快速集成Spring AI,并结合OpenAI API构建一个简单的智能对话系统。通过几步简单的配置和代码实现,开发者可以快速将AI能力集成到现有的Spring Boot项目中。

### 集成Spring AISpring Boot项目的指南 当前,官方并没有名为 "Spring AI" 的特定模块或库由Pivotal(现VMware)提供并直接集成Spring生态系统中[^1]。然而,在构建AI驱动的应用程序时,可以采用多种方式将人工智能技术引入Spring Boot应用程序。 #### 使用第三方库和服务 为了实现机器学习模型的部署和管理,通常会借助于外部服务或是通过Java或其他编程语言中的库来加载预训练好的模型文件,并创建API端点以便其他应用调用这些功能。例如: - **TensorFlow Serving**: 可以用来托管已经训练完成的TensorFlow模型,并对外暴露HTTP/RESTful接口供客户端请求预测结果。 - **MLflow**: MLflow是一个开源平台,用于管理和跟踪实验过程以及版本控制模型;它同样支持模型的服务化发布。 对于上述两种情况,都可以利用`RestTemplate`或者`WebClient`(Reactive风格)组件发起远程调用获取推理结果。 ```java @Autowired private RestTemplate restTemplate; @GetMapping("/predict") public ResponseEntity<String> predict(@RequestParam String input){ final String uri = "http://localhost:9000/predict"; Map<String, Object> params = new HashMap<>(); params.put("input", input); ResponseEntity<String> response = restTemplate.getForEntity(uri, String.class, params); return response; } ``` 另外一种常见的做法是在本地环境中运行Python脚本执行具体的算法计算工作,再把得到的结果返回给Java层处理。这可以通过命令行工具或者其他进程间通信机制达成目的。 #### 自定义starter简化集成流程 如果计划频繁地在多个项目之间重复使用某些AI特性,则考虑编写自定义Starter可能是明智的选择之一。这样做的好处是可以封装好所有必要的依赖关系及其配置项,使得开发者只需简单声明即可快速启用所需能力。 需要注意的是,尽管这里提到的方法能够帮助实现在Spring Boot里边加入AI元素的目标,但这并不意味着存在所谓的“Spring AI”。随着社区的发展和技术的进步,未来或许会有更加紧密耦合的产品出现。
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

有一只柴犬

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值