设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
注意:给定 n 是一个正整数。
示例 1:
输入: 2
输出: 2
解释: 有两种方法可以爬到楼顶。
1. 1 阶 + 1 阶
2. 2 阶
示例 2:
输入: 3
输出: 3
解释: 有三种方法可以爬到楼顶。
1. 1 阶 + 1 阶 + 1 阶
2. 1 阶 + 2 阶
3. 2 阶 + 1 阶
public class ClimbStairs70 {
/*
标签:动态规划
本问题其实常规解法可以分成多个子问题,爬第n阶楼梯的方法数量,等于 2 部分之和
爬上 n-1 阶楼梯的方法数量。因为再爬1阶就能到第n阶
爬上 n-2 阶楼梯的方法数量,因为再爬2阶就能到第n阶
所以我们得到公式 dp[n] = dp[n-1] + dp[n-2]
同时需要初始化 dp[0]=1和 dp[1]=1
时间复杂度:O(n)
*/
public int climbStairs(int n) {
if (n == 1) {
return 1;
}
int[] dp = new int[n + 1];
dp[1] = 1;
dp[2] = 2;
for (int i = 3; i <= n; i++) {
dp[i] = dp[i - 1] + dp[i - 2];
}
return dp[n];
}
/*
斐波那契数
在上述方法中,我们使用 dp数组,其中 dp[i]=dp[i-1]+dp[i-2]。
可以很容易通过分析得出 dp[i] 其实就是第 i 个斐波那契数。
Fib(n)=Fib(n-1)+Fib(n-2)
现在我们必须找出以 1 和 2 作为第一项和第二项的斐波那契数列中的第 n 个数,
也就是说 Fib(1)=1 且 Fib(2)=2。
*/
public int climbStairs1(int n) {
if (n == 1) {
return 1;
}
int first = 1;
int second = 2;
for (int i = 3; i <= n; i++) {
int third = first + second;
first = second;
second = third;
}
return second;
}
}