[LeetCode]77climbStairs

设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

注意:给定 n 是一个正整数。

示例 1:

输入: 2
输出: 2
解释: 有两种方法可以爬到楼顶。
1.  1 阶 + 1 阶
2.  2 阶
示例 2:

输入: 3
输出: 3
解释: 有三种方法可以爬到楼顶。
1.  1 阶 + 1 阶 + 1 阶
2.  1 阶 + 2 阶
3.  2 阶 + 1 阶

public class ClimbStairs70 {
/*
    标签:动态规划
    本问题其实常规解法可以分成多个子问题,爬第n阶楼梯的方法数量,等于 2 部分之和

    爬上 n-1 阶楼梯的方法数量。因为再爬1阶就能到第n阶
    爬上 n-2 阶楼梯的方法数量,因为再爬2阶就能到第n阶
    所以我们得到公式 dp[n] = dp[n-1] + dp[n-2]
    同时需要初始化 dp[0]=1和 dp[1]=1
    时间复杂度:O(n)
*/
    public int climbStairs(int n) {
        if (n == 1) {
            return 1;
        }
        int[] dp = new int[n + 1];
        dp[1] = 1;
        dp[2] = 2;
        for (int i = 3; i <= n; i++) {
            dp[i] = dp[i - 1] + dp[i - 2];
        }
        return dp[n];
    }

/*
    斐波那契数

    在上述方法中,我们使用 dp数组,其中 dp[i]=dp[i-1]+dp[i-2]。
    可以很容易通过分析得出 dp[i] 其实就是第 i 个斐波那契数。

    Fib(n)=Fib(n-1)+Fib(n-2)

    现在我们必须找出以 1 和 2 作为第一项和第二项的斐波那契数列中的第 n 个数,
    也就是说 Fib(1)=1 且 Fib(2)=2。

*/

    public int climbStairs1(int n) {
        if (n == 1) {
            return 1;
        }
        int first = 1;
        int second = 2;
        for (int i = 3; i <= n; i++) {
            int third = first + second;
            first = second;
            second = third;
        }
        return second;
    }


}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值