Spark本地worldcount详细讲解(Java版本)

package com.xlucas;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.api.java.function.VoidFunction;
import scala.Tuple2;

import java.util.Arrays;

/**
 * Created by Xlucas on 2018/12/12.
 */
public class WorldCountLocal {
    public static void main(String  [] args){
        // 编写Spark应用程序
        // 本地执行,是可以执行在idea中的main方法中,执行的
        // 第一步:创建SparkConf对象,设置Spark应用的配置信息
        // 使用setMaster()可以设置Spark应用程序要连接的Spark集群的master节点的url
        // 但是如果设置为local则代表,在本地运行
    SparkConf conf=new SparkConf().setAppName("worldcount")
            .setMaster("local");
        // 第二步:创建JavaSparkContext对象
        // 在Spark中,SparkContext是Spark所有功能的一个入口,你无论是用java、scala,甚至是python编写
        // 都必须要有一个SparkContext,它的主要作用,包括初始化Spark应用程序所需的一些核心组件,包括
        // 调度器(DAGSchedule、TaskScheduler),还会去到Spark Master节点上进行注册,等等
        // 一句话,SparkContext,是Spark应用中,可以说是最最重要的一个对象
        // 但是呢,在Spark中,编写不同类型的Spark应用程序,使用的SparkContext是不同的,如果使用scala,
        // 使用的就是原生的SparkContext对象
        // 但是如果使用Java,那么就是JavaSparkContext对象
        // 如果是开发Spark SQL程序,那么就是SQLContext、HiveContext
        // 如果是开发Spark Streaming程序,那么就是它独有的SparkContext
        // 以此类推
        JavaSparkContext sc=new JavaSparkContext(conf);
        // 第三步:要针对输入源(hdfs文件、本地文件,等等),创建一个初始的RDD
        // 输入源中的数据会打散,分配到RDD的每个partition中,从而形成一个初始的分布式的数据集
        // 我们这里呢,因为是本地测试,所以呢,就是针对本地文件
        // SparkContext中,用于根据文件类型的输入源创建RDD的方法,叫做textFile()方法
        // 在Java中,创建的普通RDD,都叫做JavaRDD
        // 在这里呢,RDD中,有元素这种概念,如果是hdfs或者本地文件呢,创建的RDD,每一个元素就相当于
        // 是文件里的一行
        JavaRDD<String> word=sc.textFile("E:\\server.log");
        // 第四步:对初始RDD进行transformation操作,也就是一些计算操作
        // 通常操作会通过创建function,并配合RDD的map、flatMap等算子来执行
        // function,通常,如果比较简单,则创建指定Function的匿名内部类
        // 但是如果function比较复杂,则会单独创建一个类,作为实现这个function接口的类
        // 先将每一行拆分成单个的单词
        // FlatMapFunction,有两个泛型参数,分别代表了输入和输出类型
        // 我们这里呢,输入肯定是String,因为是一行一行的文本,输出,其实也是String,因为是每一行的文本
        // 这里先简要介绍flatMap算子的作用,其实就是,将RDD的一个元素,给拆分成一个或多个元素
        JavaRDD<String> words=word.flatMap(new FlatMapFunction<String, String>() {
            @Override
            public Iterable<String> call(String s) throws Exception {
                return Arrays.asList(s.split(" "));
            }
        });
        // 接着,需要将每一个单词,映射为(单词, 1)的这种格式
        // 因为只有这样,后面才能根据单词作为key,来进行每个单词的出现次数的累加
        // mapToPair,其实就是将每个元素,映射为一个(v1,v2)这样的Tuple2类型的元素
        // 如果大家还记得scala里面讲的tuple,那么没错,这里的tuple2就是scala类型,包含了两个值
        // mapToPair这个算子,要求的是与PairFunction配合使用,第一个泛型参数代表了输入类型
        // 第二个和第三个泛型参数,代表的输出的Tuple2的第一个值和第二个值的类型
        // JavaPairRDD的两个泛型参数,分别代表了tuple元素的第一个值和第二个值的类型
        JavaPairRDD<String,Integer> wordpair=words.mapToPair(new PairFunction<String, String, Integer>() {
            @Override
            public Tuple2<String, Integer> call(String s) throws Exception {
                return new Tuple2<String,Integer>(s,1);
            }
        });
        // 接着,需要以单词作为key,统计每个单词出现的次数
        // 这里要使用reduceByKey这个算子,对每个key对应的value,都进行reduce操作
        // 比如JavaPairRDD中有几个元素,分别为(hello, 1) (hello, 1) (hello, 1) (world, 1)
        // reduce操作,相当于是把第一个值和第二个值进行计算,然后再将结果与第三个值进行计算
        // 比如这里的hello,那么就相当于是,首先是1 + 1 = 2,然后再将2 + 1 = 3
        // 最后返回的JavaPairRDD中的元素,也是tuple,但是第一个值就是每个key,第二个值就是key的value
        // reduce之后的结果,相当于就是每个单词出现的次数
        JavaPairRDD<String,Integer> wordcount=wordpair.reduceByKey(new Function2<Integer, Integer, Integer>() {
            @Override
            public Integer call(Integer i1, Integer i2) throws Exception {
                return i1+i2;
            }
        });
        // 到这里为止,我们通过几个Spark算子操作,已经统计出了单词的次数
        // 但是,之前我们使用的flatMap、mapToPair、reduceByKey这种操作,都叫做transformation操作
        // 一个Spark应用中,光是有transformation操作,是不行的,是不会执行的,必须要有一种叫做action
        // 接着,最后,可以使用一种叫做action操作的,比如说,foreach,来触发程序的执行
        wordcount.foreach(new VoidFunction<Tuple2<String, Integer>>() {
            @Override
            public void call(Tuple2<String, Integer> s) throws Exception {
                System.out.println("单词:"+s._1()+":"+s._2() );
            }
        });

    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值