AAAI论文合集解读|Ternary Spike Learning Ternary Spikes for Spiking Neural Networks-water-merged

论文标题

Ternary Spike: Learning Ternary Spikes for Spiking Neural Networks 三元脉冲:学习用于脉冲神经网络的三元脉冲

论文链接

Ternary Spike: Learning Ternary Spikes for Spiking Neural Networks 论文下载

论文作者

Yufei Guo, Yuanpei Chen, Xiaode Liu, Weihang Peng, Yuhan Zhang, Xuhui Huang, Zhe Ma

内容简介

本文提出了一种新的三元脉冲神经元(Ternary Spike),旨在解决脉冲神经网络(SNN)中二元脉冲激活图所导致的信息丢失问题。传统的二元脉冲激活图在信息传递中存在容量限制,导致准确性下降。三元脉冲神经元通过引入{-1, 0, 1}的脉冲激活,提升了信息容量,同时保持了事件驱动和无乘法运算的优势。此外,本文还提出了一种可训练的三元脉冲形式,使得不同层的神经元能够学习适合的脉冲幅度,从而更好地适应膜电位分布的差异。通过在多个静态和动态数据集上的实验,结果表明,三元脉冲神经元在性能上优于现有的最先进方法。

分点关键点

  1. 三元脉冲神经元的提出

    • 本文提出的三元脉冲神经元使用{-1, 0, 1}的脉冲激活,克服了二元脉冲激活图的信息容量限制。通过理论和实验分析,证明了三元脉冲神经元在信息传递中的有效性。
      在这里插入图片描述
  2. 可训练的三元脉冲形式

    • 通过引入可训练因子,三元脉冲神经元能够在训练阶段学习适合的脉冲幅度。这种方法使得不同层的神经元能够根据膜电位分布的差异,采用不同的脉冲幅度,从而提高了网络的表达能力。
      在这里插入图片描述
  3. 实验验证与性能提升

    • 在多个数据集(如CIFAR-10、CIFAR-100和ImageNet)上进行的广泛实验表明,使用三元脉冲神经元的SNN在准确性和效率上均优于现有的最先进模型。例如,在ImageNet上,使用ResNet34的模型在仅4个时间步内达到了70.74%的top-1准确率,较其他模型提高了约3%。
  4. 事件驱动和无乘法运算的优势

    • 三元脉冲神经元保留了SNN的事件驱动特性和无乘法运算的优势,使得在计算效率上仍然具有竞争力。这一特性使得SNN在能耗方面表现优异,适合在资源受限的环境中应用。

论文代码

代码链接:https://github.com/yfguo91/Ternary-Spike

中文关键词

  1. 三元脉冲神经元
  2. 脉冲神经网络
  3. 信息容量
  4. 可训练因子
  5. 事件驱动
  6. 无乘法运算

AAAI2024论文合集:

AAAI2024论文合集

希望这些论文能帮到你!如果觉得有用,记得点赞关注哦~ 后续还会更新更多论文合集!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值