论文标题
Causal Contrastive Learning for Counterfactual Regression Over Time 因果对比学习用于时间序列的反事实回归
论文链接
Causal Contrastive Learning for Counterfactual Regression Over Time论文下载
论文作者
Mouad El Bouchattaoui, Myriam Tami, Benoit Lepetit, Paul-Henry Cournède
内容简介
本文提出了一种新的反事实回归方法,旨在估计随时间变化的治疗效果,特别强调长期预测。与现有模型(如因果Transformer)不同,本文的方法利用循环神经网络(RNN)进行长期预测,并结合对比预测编码(CPC)和信息最大化(InfoMax)原则,以提高效率,避免使用计算量大的Transformer。该方法能够在存在时变混杂因素的情况下捕获长期依赖关系,并通过最大化序列数据与其表示之间的互信息,确保可逆表示的有效性。实验结果表明,该方法在合成和真实数据集上均取得了最先进的反事实估计结果,标志着对比预测编码在因果推断中的开创性应用。
分点关键点
-
反