AAAI2024论文合集解读|Ced-NeRF A Compact and Efficient Method for Dynamic Neural Radiance Fields

论文标题

Ced-NeRF: A Compact and Efficient Method for Dynamic Neural Radiance Fields Ced-NeRF:一种紧凑且高效的动态神经辐射场方法

论文链接

Ced-NeRF: A Compact and Efficient Method for Dynamic Neural Radiance Fields论文下载

论文作者

Youtian Lin, Nanjing University, Harbin Institute of Technology

内容简介

本文提出了一种名为Ced-NeRF的紧凑且高效的动态神经辐射场方法,旨在解决动态场景的实时渲染问题。尽管神经辐射场(NeRF)在静态场景渲染中表现出色,但在动态场景中,由于时间维度的计算复杂性,实现实时渲染仍然具有挑战性。Ced-NeRF通过引入一种混合表示,结合显式和隐式方法,显著加快了训练和渲染速度,同时保持高质量的渲染效果。该方法通过神经潜变量正则化和分层运动预测来防止过拟合,并提出了一种新颖的时间积分方法,以更好地建模光照变化。实验结果表明,Ced-NeRF在多个动态场景数据集上超越了现有的最先进方法,展现出快速的训练和渲染速度。
在这里插入图片描述

分点关键点

  1. Ced-NeRF框

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值