论文标题
Ced-NeRF: A Compact and Efficient Method for Dynamic Neural Radiance Fields Ced-NeRF:一种紧凑且高效的动态神经辐射场方法
论文链接
Ced-NeRF: A Compact and Efficient Method for Dynamic Neural Radiance Fields论文下载
论文作者
Youtian Lin, Nanjing University, Harbin Institute of Technology
内容简介
本文提出了一种名为Ced-NeRF的紧凑且高效的动态神经辐射场方法,旨在解决动态场景的实时渲染问题。尽管神经辐射场(NeRF)在静态场景渲染中表现出色,但在动态场景中,由于时间维度的计算复杂性,实现实时渲染仍然具有挑战性。Ced-NeRF通过引入一种混合表示,结合显式和隐式方法,显著加快了训练和渲染速度,同时保持高质量的渲染效果。该方法通过神经潜变量正则化和分层运动预测来防止过拟合,并提出了一种新颖的时间积分方法,以更好地建模光照变化。实验结果表明,Ced-NeRF在多个动态场景数据集上超越了现有的最先进方法,展现出快速的训练和渲染速度。
分点关键点
-
Ced-NeRF框