AAAI2024论文合集解读|Geometric-Facilitated Denoising Diffusion Model for 3D Molecule Generation

论文标题

Geometric-Facilitated Denoising Diffusion Model for 3D Molecule Generation 几何促进的 3D 分子生成去噪扩散模型

论文链接

Geometric-Facilitated Denoising Diffusion Model for 3D Molecule Generation论文下载

论文作者

Can Xu, Haosen Wang, Weigang Wang, Pengfei Zheng, Hongyang Chen

内容简介

本文提出了一种名为几何促进分子扩散(GFMDiff)的新型去噪扩散模型,旨在解决3D分子生成中的两个主要挑战:准确预测分子构象和充分利用几何信息以促进离散图结构的生成。GFMDiff通过引入双轨Transformer网络(DTN)来捕捉复杂的多体原子间关系,并设计了几何促进损失(GFLoss)以干预键的形成,从而提高生成分子的稳定性和有效性。实验结果表明,GFMDiff在多个基准测试中表现优越,能够生成有效、新颖且稳定的3D分子。

分点关键点

  1. GFMDiff框架

    • GFMDiff结合了双轨Transformer网络(DTN)和几何促进损失(GFLoss),有效捕捉分子几何信息和多体相互作用。DTN作为去噪核,能够全面利用空间几何信息,提升分子生成的准确性。
      在这里插入图片描述
  2. 双轨Transformer网络(DTN)

    • DTN通过成对距离和三元组角度来捕捉原子间的几何信息,确保模型能够处理复杂的原子间关系。该网络的设计使得模型能够有效地学习全局和局部特征,从而提高生成分子的稳定性。
      在这里插入图片描述
  3. 几何促进损失(GFLoss)

    • GFLoss在训练过程中主动干预键的形成,确保生成的分子不仅具有有效的拓扑结构,还具备稳定的构象。通过对原子价的交叉验证,GFLoss帮助模型建立几何结构与有效性之间的紧密联系。
      在这里插入图片描述
  4. 实验结果与性能

    • 在多个基准测试中,GFMDiff展示了其在生成有效、稳定的3D分子方面的优越性。与现有方法相比,GFMDiff在生成样本的有效性和独特性上均表现出色,证明了其在分子生成领域的潜力。
      在这里插入图片描述

论文代码

代码链接:https://github.com/CanXu/GFMDiff

中文关键词

  1. 去噪扩散模型
  2. 3D分子生成
  3. 几何促进
  4. 双轨Transformer网络
  5. 几何促进损失
  6. 分子构象

AAAI论文合集:

AAAI论文合集

希望这些论文能帮到你!如果觉得有用,记得点赞关注哦~ 后续还会更新更多论文合集!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值