论文标题
Geometric-Facilitated Denoising Diffusion Model for 3D Molecule Generation 几何促进的 3D 分子生成去噪扩散模型
论文链接
Geometric-Facilitated Denoising Diffusion Model for 3D Molecule Generation论文下载
论文作者
Can Xu, Haosen Wang, Weigang Wang, Pengfei Zheng, Hongyang Chen
内容简介
本文提出了一种名为几何促进分子扩散(GFMDiff)的新型去噪扩散模型,旨在解决3D分子生成中的两个主要挑战:准确预测分子构象和充分利用几何信息以促进离散图结构的生成。GFMDiff通过引入双轨Transformer网络(DTN)来捕捉复杂的多体原子间关系,并设计了几何促进损失(GFLoss)以干预键的形成,从而提高生成分子的稳定性和有效性。实验结果表明,GFMDiff在多个基准测试中表现优越,能够生成有效、新颖且稳定的3D分子。
分点关键点
-
GFMDiff框架
- GFMDiff结合了双轨Transformer网络(DTN)和几何促进损失(GFLoss),有效捕捉分子几何信息和多体相互作用。DTN作为去噪核,能够全面利用空间几何信息,提升分子生成的准确性。
- GFMDiff结合了双轨Transformer网络(DTN)和几何促进损失(GFLoss),有效捕捉分子几何信息和多体相互作用。DTN作为去噪核,能够全面利用空间几何信息,提升分子生成的准确性。
-
双轨Transformer网络(DTN)
- DTN通过成对距离和三元组角度来捕捉原子间的几何信息,确保模型能够处理复杂的原子间关系。该网络的设计使得模型能够有效地学习全局和局部特征,从而提高生成分子的稳定性。
- DTN通过成对距离和三元组角度来捕捉原子间的几何信息,确保模型能够处理复杂的原子间关系。该网络的设计使得模型能够有效地学习全局和局部特征,从而提高生成分子的稳定性。
-
几何促进损失(GFLoss)
- GFLoss在训练过程中主动干预键的形成,确保生成的分子不仅具有有效的拓扑结构,还具备稳定的构象。通过对原子价的交叉验证,GFLoss帮助模型建立几何结构与有效性之间的紧密联系。
- GFLoss在训练过程中主动干预键的形成,确保生成的分子不仅具有有效的拓扑结构,还具备稳定的构象。通过对原子价的交叉验证,GFLoss帮助模型建立几何结构与有效性之间的紧密联系。
-
实验结果与性能
- 在多个基准测试中,GFMDiff展示了其在生成有效、稳定的3D分子方面的优越性。与现有方法相比,GFMDiff在生成样本的有效性和独特性上均表现出色,证明了其在分子生成领域的潜力。
- 在多个基准测试中,GFMDiff展示了其在生成有效、稳定的3D分子方面的优越性。与现有方法相比,GFMDiff在生成样本的有效性和独特性上均表现出色,证明了其在分子生成领域的潜力。
论文代码
代码链接:https://github.com/CanXu/GFMDiff
中文关键词
- 去噪扩散模型
- 3D分子生成
- 几何促进
- 双轨Transformer网络
- 几何促进损失
- 分子构象
AAAI论文合集:
希望这些论文能帮到你!如果觉得有用,记得点赞关注哦~ 后续还会更新更多论文合集!!