论文标题
Object-Aware Domain Generalization for Object Detection 面向对象的域泛化目标检测
论文链接
Object-Aware Domain Generalization for Object Detection论文下载
论文作者
Wooju Lee, Dasol Hong, Hyungtae Lim, Hyun Myung
内容简介
本文提出了一种面向对象的域泛化方法(OA-DG),旨在解决单域泛化(S-DG)在目标检测中的应用问题。传统的S-DG方法主要集中在分类任务上,导致在目标检测中可能损害对象的语义特征,从而引发不准确的目标定位和错误分类。OA-DG方法结合了数据增强和训练策略,分别称为OA-Mix和OA-Loss。OA-Mix通过多级变换和对象感知混合策略生成多域数据,确保在增强过程中保留对象的语义特征。OA-Loss则使模型能够从原始图像和OA-Mixed图像中学习域不变的表示。实验结果表明,所提出的方法在标准基准测试中优于现有的最先进方法,展示了其在未见目标域上的强大泛化能力。
分点关键点
-
OA-Mix数据增强
- OA-Mix是一个创新的数据增强方法,通过多级变换和对象感知混合策略生成多域数据。它在图像中引入局部变化,同时确保不损害对象的语义特征,从而增强了图像的多样性。
- OA-Mix是一个创新的数据增强方法,通过多级变换和对象感知混合策略生成多域数据。它在图像中引入局部变化,同时确保不损害对象的语义特征,从而增强了图像的多样性。
-
OA-Loss训练策略
- OA-Loss通过训练模型学习前景和背景实例之间的语义关系,减少原始域和增强域之间的差距。该方法不仅考虑了前景实例的类间和类内关系,还关注背景实例的语义关系,从而提高了目标检测的准确性。
- OA-Loss通过训练模型学习前景和背景实例之间的语义关系,减少原始域和增强域之间的差距。该方法不仅考虑了前景实例的类间和类内关系,还关注背景实例的语义关系,从而提高了目标检测的准确性。
-
对比学习的应用
- OA-Loss采用对比学习的方法,训练模型在多域中区分前景和背景实例。通过推拉机制,增强了模型对不同类和背景实例的区分能力,进一步提升了模型的泛化能力。
-
实验结果与性能
- 在多个标准基准测试中,OA-DG方法表现出色,尤其是在面对常见的腐蚀和不同天气条件下的鲁棒性评估中,显示出优于现有最先进方法的性能。
论文代码
代码链接:https://github.com/WoojuLee24/OA-DG
中文关键词
- 面向对象的域泛化
- 单域泛化
- 目标检测
- 数据增强
- 训练策略
- 对比学习
- 语义特征
- 鲁棒性评估
AAAI论文合集:
希望这些论文能帮到你!如果觉得有用,记得点赞关注哦~ 后续还会更新更多论文合集!!