论文标题
Low-Light Face Super-resolution via Illumination, Structure, and Texture Associated Representation 基于照明、结构和纹理关联表示的弱光人脸超分辨率
论文链接
论文作者
Chenyang Wang, Junjun Jiang, Kui Jiang, Xianming Liu
内容简介
本文提出了一种新颖的弱光人脸超分辨率(FSR)方法,旨在解决在低光照和低分辨率条件下捕获的人脸图像的恢复问题。现有的FSR技术在恢复可信纹理方面存在不足,因此本文将恢复任务分解为结构保真度维护和纹理一致性学习。具体而言,提出的框架包括两个步骤:照明校正人脸超分辨率网络(IC-FSRNet)用于照亮人脸并恢复结构信息,以及细节增强模型(DENet)用于改善面部细节。通过引入互学习机制,IC-FSRNet和DENet之间的互补信息得以充分利用,从而实现迭代优化。实验结果表明,所提出的联合优化框架在重建质量和感知质量方面显著优于现有的两阶段解决方案。
分点关键点
-
框架设计
- 本文提出的框架将人脸超分辨率任务分解为两个主要部分:结构保真度维护和纹理一致性学习。IC-FSRNet负责照明校正和结构恢复,而DENet则专注于细节增强,二者通过互学习机制相互促进。
-
照明校正人脸超分辨率网络(IC-FSRNet)
- IC-FSRNet由照明估计分支和人脸超分辨率分支组成,采用迭代方式进行照明调整和超分辨率处理。通过全局响应捕获和双边网格学习,IC-FSRNet能够有效恢复人脸结构并进行照明校正。
-
细节增强模型(DENet)
- DENet基于扩散概率模型,旨在去除伪影并提升视觉质量。通过将粗略结果输入DENet,能够生成更具细节和视觉吸引力的人脸图像。
-
实验结果
- 实验表明,所提出的方法在多个指标上(如PSNR、SSIM等)均优于现有的最先进方法,证明了其在低光照低分辨率人脸图像恢复中的有效性。
- 实验表明,所提出的方法在多个指标上(如PSNR、SSIM等)均优于现有的最先进方法,证明了其在低光照低分辨率人脸图像恢复中的有效性。
论文代码
代码链接:https://github.com/wcy-cs/IC-FSRDENet
中文关键词
- 弱光人脸超分辨率
- 照明校正
- 结构保真度
- 纹理一致性
- 细节增强
- 扩散概率模型
AAAI论文合集:
希望这些论文能帮到你!如果觉得有用,记得点赞关注哦~ 后续还会更新更多论文合集!!