AAAI2024最佳解读|SAUI Scale-Aware Unseen Imagineer for Zero-Shot Object Detection

论文标题

SAUI: Scale-Aware Unseen Imagineer for Zero-Shot Object Detection SAUI:面向零样本目标检测的尺度感知未见想象者

论文链接

SAUI: Scale-Aware Unseen Imagineer for Zero-Shot Object Detection论文下载

论文作者

Jiahao Wang, Caixia Yan, Weizhan Zhang, Huan Liu, Hao Sun, Qinghua Zheng

内容简介

本文提出了一种新的零样本目标检测(ZSD)方法——尺度感知未见想象者(SAUI),旨在解决未见物体的尺度变化问题。传统的生成方法在合成未见特征时,通常只考虑单一尺度,导致合成特征缺乏多样性。SAUI通过设计一个粗到细的特征提取器,捕获多尺度的已见类特征,并利用系列生成对抗网络(Series-GAN)逐尺度生成未见特征。实验结果表明,SAUI在PASCAL VOC、COCO和DIOR数据集上表现优异,尤其在检测尺度变化和小型物体方面,达到了新的最先进性能。在这里插入图片描述

分点关键点在这里插入图片描述

  1. 尺度变化挑战

    • 文章揭示了当前零样本目标检测方法在处理未见物体时面临的尺度变化问题。未见类物体的尺度因姿势、形状和拍摄角度的不同而变化,传统方法未能有效捕捉这一特性。
  2. SAUI框架设计

    • SAUI框架包括一个粗到细的特征提取器和一个系列生成对抗网络(Series-GAN)。提取器通过多个尺度视角提取已见类特征,而生成器则逐尺度合成未见特征,确保合成特征的多样性和鲁棒性。
  3. 多尺度对比组件

    • 为了优化合成过程,SAUI引入了三个多尺度对比组件,分别是尺度内轮廓保持、尺度内细节发散和尺度间互构。这些组件帮助保持同类特征的可分离性,并增强不同尺度特征之间的关联性。
  4. 实验结果

    • 在PASCAL VOC、COCO和DIOR数据集上的大量实验表明,SAUI在不同场景下的检测性能优于现有方法,特别是在小型物体和尺度变化物体的检测上,展现出显著的优势。在这里插入图片描述

论文代码

代码链接:https://github.com/your-repo/SAUI(假设存在代码链接)

中文关键词

  1. 零样本目标检测
  2. 尺度感知
  3. 生成对抗网络
  4. 特征提取
  5. 多尺度特征
  6. 视觉特征

AAAI论文合集:

AAAI论文合集

希望这些论文能帮到你!如果觉得有用,记得点赞关注哦~ 后续还会更新更多论文合集!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值