马来西亚中小企业信用风险预测与云计算恶意软件分类
在当今数字化时代,机器学习和深度学习技术在金融风险预测和网络安全领域发挥着至关重要的作用。本文将探讨两个重要的应用场景:一是利用机器学习和深度学习模型预测马来西亚中小企业的信用风险;二是使用卷积神经网络(CNN)对云计算中的恶意软件进行分类。
1. 马来西亚中小企业信用风险预测
1.1 模型选择与数据处理
在预测中小企业贷款偿还风险时,采用了四种不同的预测算法,分别是随机森林(RF)、神经网络(NN)、支持向量机(SVM)和决策树(DT)。其中,RF和NN属于深度学习方法,而SVM和DT属于机器学习方法。
首先,使用K - Mean聚类算法将数据分为三个风险集群:低风险、中等风险和高风险。通过分析轮廓值来确定最佳的聚类数量和评估聚类质量。轮廓值的范围在 - 1 到 1 之间,值为 1 表示数据点在其集群内非常紧凑且远离其他集群,接近 0 表示集群重叠,负值表示样本可能被分配到错误的集群。
聚类结果如下:
| 风险等级 | 轮廓值范围 |
| ---- | ---- |
| 低风险(C2) | 0.5 - 0.53 |
| 中等风险(C3) | 0.53 - 0.645 |
| 高风险(C1) | 0.645 - 0.72 |
聚类模型的结果被提供给分类模型。对预处理后的数据使用四种预测模型进行训练和校准,包括支持向量机、决策树、随机森林和人工神经网络。
模型开发流程如下:
graph LR
A[数据准备] -
订阅专栏 解锁全文
10

被折叠的 条评论
为什么被折叠?



