有限自动机与有理和可识别幂级数:理论与应用探索
在自动机理论和形式幂级数的研究领域中,有限自动机、线性系统、幂级数等概念相互交织,为我们理解和处理语言、计算等问题提供了强大的工具。下面将深入探讨这些概念及其相关理论。
有限自动机与线性系统
有限自动机在不同的半环下有着不同的表现和性质。在布尔半环的情况下,特定的有限自动机与Büchi引入的有限自动机等价。而在半环$N_{\infty}$中,某些构造不会改变有限自动机有向图中特定路径的数量。
有限线性系统可以看作是具有有限和无限推导的正则文法的推广。一个有限$S’$-线性系统可以表示为$y = Ay + P$的形式,其中$A$是矩阵,$P$是向量,$y$是变量向量。对于这样的系统,在一定条件下,$A_{\omega,k} + A^*P$是其解。
设$k \in {0, \ldots, n}$,$A_i = (n, e_i, A, P, k)$为有限$S’$-自动机,其中$e_i$是第$i$个单位向量。那么$|A_i|$是有限$S’$-线性系统$y = Ay + P$的一个解的第$i$个分量,我们称这个解为该线性系统的第$k$个自动机理论解。
下面通过一个表格来总结有限线性系统的相关信息:
|项目|详情|
| ---- | ---- |
|系统形式|$y = Ay + P$,其中$A \in (S’ \cup {0, 1})^{n\times n}$,$P \in (S’ \cup {0, 1})^{n\times 1}$,$y$是变量向量|
|解|对于$0 \leq k \leq n$,$A_{\omega,k} + A^ P$是解|
超级会员免费看
订阅专栏 解锁全文
11

被折叠的 条评论
为什么被折叠?



