林登迈尔系统与相关级数理论:语言等价性与幂级数特性探索
在形式语言与自动机理论的研究领域中,林登迈尔系统(Lindenmayer Systems)及其相关的代数级数理论是一个重要的研究方向。它涉及到语言等价性的判定、幂级数的性质和分类等多个方面,这些研究对于理解形式语言的结构和特性具有重要意义。
1. 语言等价性问题
在语言等价性的研究中,DF0L - D0L 语言等价问题是一个关键问题。通过特定的条件和定理,我们可以将其转化为有限个 D0L 序列等价问题。具体来说,对于满足一定条件的情况,当$\psi$在$L(H)$上是单射时,$L(G) = L(H)$成立的条件可以进一步推导得出。
Ruohonen 证明了更强的结果,即 F0L 和 D0L 语言的等价问题是可判定的。F0L 系统是由 DF0L 系统通过将底层态射替换为有限替换得到的。此外,对于 HD0L 系统,如果$H_1$和$H_2$的长度序列是 D0L 长度序列,那么判断$L(H_1) = L(H_2)$是否成立也是可判定的。
| 语言系统类型 | 等价问题判定情况 |
|---|---|
| DF0L - D0L | 可转化为有限个 D0L 序列等价问题 |
| F0L - D0L | 可判定 |
| HD0L(长度序列为 D0L 长度序列) | 可判定 |
超级会员免费看
订阅专栏 解锁全文
16

被折叠的 条评论
为什么被折叠?



