数据结构 树 二叉排序树(BST)

本文详细介绍了二叉排序树(BST)的概念,包括其性质、节点定义,并展示了查找、插入和删除操作的步骤与代码实现。此外,还分析了查找效率并提出了优化方案,如AVL树和红黑树,以保持查找效率为O(log(n))。
摘要由CSDN通过智能技术生成

二叉排序树(BST)

概念

二叉排序树(Binary Sort Tree),又称二叉查找树(Binary Search Tree),亦称二叉搜索树;一棵二叉树或者是空二叉树,或者是具有如下性质的二叉树:

  1. 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值;
  2. 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值;
  3. 它的左、右子树也分别为二叉排序树。

左 子 树 节 点 值 < 根 节 点 值 < 右 子 树 节 点 值 左子树节点值\lt根节点值\lt右子树节点值 <<

进行中序遍历可以得到一个递增的有序序列。

二叉排序树节点定义

//二叉排序树节点
typedef struct BSTNode{
    int key;
    struct BSTNode *leftChild,*rightChild;
}BSTNode,*BSTree;

常用操作

查找

查找步骤:
  1. 如果树非空,目标值与根节点值比较;
  2. 如果相等,则查找成功;
  3. 如果小于根节点值,则在左子树上查找;
  4. 如果大于根节点值,则在右子树上查找;
  5. 查找成功返回节点指针,查找失败返回null。
查找代码:

非递归方法:最坏空间复杂度为O(1)

//在二叉排序树中查找值为key的节点(非递归实现)
BSTNode *search(BSTree tree,int key){
    while(tree != NULL && key != tree->key){ //如果树为空或key等于根节点值,结束循环
        if(key < tree->key){ //小于,在左子树上查找
            tree = tree->leftChild;
        }else{ //大于,在右子树上查找
            tree = tree->rightChild;
        }
    }
    return tree;
}

递归方法:最坏空间复杂度为O(h)

//在二叉排序树中查找值为key的节点(递归实现)
BSTNode *searchOfRecursion(BSTree tree,int key){
    if(tree == NULL){
        return NULL; //查找失败
    }
    if(key == tree->key){
        return tree; //查找成功
    }else if(key < tree->key){ //小于,在左子树上查找
        return searchOfRecursion(tree->leftChild,key);
    }else{ //大于,在右子树上查找
        return searchOfRecursion(tree->rightChild,key);
    }
}
例如:

查找68

1

插入

插入步骤:
  1. 如果二叉排序树为空,则直接插入节点;
  2. 如果二叉排序树非空,若插入值小于根节点值,则插入到左子树上;
  3. 如果二叉排序树非空,若插入值大于根节点值,则插入到右子树上;
  4. 如果二叉排序树非空,若插入值等于根节点值,则插入值已存在,插入失败。
插入代码:

最坏空间复杂度为O(h)。

//在二叉排序树中插入值为key的节点(递归实现)
int insert(BSTree *tree, int key) {
    if (*tree == NULL) { //如果为空,插入新节点
        *tree = (BSTree) malloc(sizeof(BSTNode));
        (*tree)->key = key;
        (*tree)->leftChild = (*tree)->rightChild = NULL;
        return 1;
    }
    if ((*tree)->key == key) { //已存在,插入失败
        return 0;
    } else if (key < (*tree)->key) { //插入到左子树中
        return insert(&((*tree)->leftChild), key);
    } else { //插入到右子树中
        return insert(&((*tree)->rightChild), key);
    }
}
例如:

给定一棵树:

2

插入26:

3

删除

删除步骤:
  1. 先查找到目标节点;
  2. 如果节点是叶子节点,直接删除,不影响原树;
  3. 如果节点只有一棵左子树或右子树,删除节点,将它的左子树或右子树整个移动到删除节点的位置;
  4. 如果节点既有左子树又有右子树,找到要删除的节点p的直接前驱或者直接后继节点s,用节点s的值替换节点p的值,然后在删除节点s。
删除代码:
//删除当前子树的根节点
int deleteNode(BSTree *tree) {
    BSTree q, s;

    if (!((*tree)->leftChild) && !((*tree)->rightChild)) { //如果左右子树都为空,直接删除
        free(*tree);
        * tree = NULL;
    } else if (!((*tree)->leftChild)) { //如果左子树都为空
        q = *tree;
        *tree = (*tree)->rightChild;
        free(q);
    } else if (!((*tree)->rightChild)) { //如果右子树都为空
        q = *tree;
        *tree = (*tree)->leftChild;
        free(q);
    } else { //如果左右子树都为空
        q = *tree;
        //查找节点tree直接前驱
        s = (*tree)->leftChild;
        while (s->rightChild) {
            q = s;
            s = s->rightChild;
        }
        (*tree)->key = s->key; //替换节点的值
        //删除节点s
        if (q != *tree) {
            q->rightChild = s->leftChild;//若有,则在删除直接前驱结点的同时,令前驱的左孩子结点改为 q 指向结点的孩子结点
        } else {
            q->leftChild = s->leftChild;//否则,直接将左子树上移即可
        }
        free(s);
    }
    return true;
}

//在二叉排序树中删除值为key的节点(递归实现)
int delete(BSTree *tree, int key) {
    if (!(*tree)) {//数为空时返回失败
        return false;
    } else {
        //查找要删除的节点
        if (key == (*tree)->key) { //对要删除的节点进行删除
            deleteNode(tree);
            return true;
        } else if (key < (*tree)->key) { //在左子树上查找
            return delete(&((*tree)->leftChild), key);
        } else { //在右子树上查找
            return delete(&((*tree)->rightChild), key);
        }
    }
}
例如:

给定一棵树:

3

删除叶子节点26:

2

删除只有右子树的节点5:

4

删除既有左子树又有右子树的节点61(案例使用的是替换直接后继节点68):

5

构造

构造步骤:
  1. 循环二叉搜索树的插入操作即可。

数组元素排列序列不同可导致构建的二叉排序树不同(也可能相同)。

构造代码:
//根据数组构造二叉排序树
void create(BSTree *tree, int str[], int n) {
    *tree = NULL; //初始时tree为空
    for (int i = 0; i < n; ++i) { //依次插入
        insert(tree, str[i]);
    }
}
例如:

根据序列[50,66,60,26,21,30,70,68]构造BST:

6

根据序列[50,26,21,30,66,60,70,68]构造BST:

6

根据序列[26,21,30,50,60,66,68,70]构造BST:

7

查找效率分析

查找长度:在查找运算中,需要对比节点值的次数称为查找长度,反映了查找操作的时间复杂度。

如果树高为h,找到最下层的叶子节点需要对比h次;

最好情况,n个节点的二叉树最小高度为(log2n)+1,平均查找长度ASL为O(log2n);

最坏情况,每个节点只有一个分支,树高h等于节点数n,平均查找长度ASL为O(n);

平均查找长度ASL(Average Search Length)计算:

下图树的平均查找长度ASL:

6

A S L = ( 1 × 1 + 2 × 2 + 3 × 4 + 4 × 1 ) ÷ 8 = 2.625 \begin{aligned} ASL&=(1\times1+2\times2+3\times4+4\times1)\div8 \\ &=2.625 \end{aligned} ASL=(1×1+2×2+3×4+4×1)÷8=2.625

下图树的平均查找长度ASL:

7

A S L = ( 1 × 1 + 2 × 2 + 3 × 1 + 4 × 1 + 5 × 1 + 6 × 1 + 7 × 1 ) ÷ 8 = 3.75 \begin{aligned} ASL&=(1\times1+2\times2+3\times1+4\times1+5\times1+6\times1+7\times1)\div8 \\ &=3.75 \end{aligned} ASL=(1×1+2×2+3×1+4×1+5×1+6×1+7×1)÷8=3.75

优化

  • AVL树
  • 红黑树

可以使查找树的高度为O(log(n))。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值