自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(4)
  • 收藏
  • 关注

原创 机器学习中关于正则化的理解

正则化的目的:避免出现过拟合(over-fitting)经验风险最小化 + 正则化项 = 结构风险最小化经验风险最小化(ERM),是为了让拟合的误差足够小,即:对训练数据的预测误差很小。但是,我们学习得到的模型,当然是希望对未知数据有很好的预测能力(泛化能力),这样才更有意义。当拟合的误差足够小的时候,可能是模型参数较多,模型比较复杂,此时模型的泛化能力一般。于是,我们增加一个正则

2014-08-18 09:47:37 4062

原创 样本集线性可分的一个充要条件

样本集线性可分的充分必要条件是正实例点集所构成的凸集与负shi

2014-08-17 21:17:17 5891

原创 证:单层感知机不能表示异或逻辑

摘要

2014-08-15 10:06:17 17795 5

原创 证:最大化对数似然函数等价于最小化残差平方和

给定si

2014-08-15 09:10:58 4401

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除