- 博客(4)
- 收藏
- 关注
原创 机器学习中关于正则化的理解
正则化的目的:避免出现过拟合(over-fitting)经验风险最小化 + 正则化项 = 结构风险最小化经验风险最小化(ERM),是为了让拟合的误差足够小,即:对训练数据的预测误差很小。但是,我们学习得到的模型,当然是希望对未知数据有很好的预测能力(泛化能力),这样才更有意义。当拟合的误差足够小的时候,可能是模型参数较多,模型比较复杂,此时模型的泛化能力一般。于是,我们增加一个正则
2014-08-18 09:47:37
4062
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人