数据处理与分析
文章平均质量分 54
pandacsu
这个作者很懒,什么都没留下…
展开
-
异常值处理
异常值处理是数据预处理中的一个重要步骤,随着大数据时代的到来,异常值处理也越来越重要。本文主要总结了一些常用的判断异常值的方法。 1、3-σ准则 要求数据服从正态分布,认为大于μ+3σ或小于μ—3σ的实验数据值作为异常值,其中μ为数据均值,σ为数据标准差 matlab代码示例%异常值处理 %采用3西格玛方法 clc; clear all; data0=xlsread('C:\Users\Adm原创 2017-05-04 11:20:14 · 29381 阅读 · 6 评论 -
缺失值的处理方法
转载自http://blog.sina.com.cn/s/blog_670445240102v08m.html 对于数据挖掘和分析人员来说,数据准备(Data Preparation,包括数据的抽取、清洗、转换和集成)常常占据了70%左右的工作量。而在数据准备的过程中,数据质量差又是最常见而且令人头痛的问题。本文针对缺失值和特殊值这种数据质量问题,进行了初步介绍并推荐了一些处理方法。 值得注意的转载 2017-07-22 10:28:52 · 2700 阅读 · 0 评论