DeepLearning4j的StackVertex实现参数共享

设input1和input2是shape为(M,I)的张量,权重W是shape为(I,O)的张量,
设对应的两个输出值为output1和output2,其shape是(M,O),设损失函数对输出值的导数为epsilon1和epsilon2,损失函数对线性部分的导数为delta1和delta2,shape也都是(M,O):
在这里插入图片描述
Nd4j.gemm(input, delta, weightGrad, true, false, 1.0, 0.0);

以全连接为例,已知gradient=input^T * delta
权重梯度gradient的shape和权重W相同,shape=(I,O)
得到(注意看逗号):
在这里插入图片描述
在这里插入图片描述
对input1和input2合并,即沿着dimension=0合并,新的input和delta如下:
在这里插入图片描述
此处发现G=g1+g2
同理可推,当有n个input时,G=g1+g2+…+gn

1.gn的意义:
L=L1+L2+…+Ln
在这里插入图片描述
2.G的意义:
将n个input合并为一个Input,视为一个整体,直接计算权重W的梯度G,而G的值正是等于每个单独计算的梯度的总和。

综上所述,只要对n个输入沿着dimension=0合并成新的input进入其他Layer,既能做到前向传播时权重W被共用,又能做到反向传播时梯度符合“和函数的导数”。
在这里插入图片描述
偏差bias的梯度同理。

Deeplearning4j中的实现类:
org.deeplearning4j.nn.conf.graph.StackVertex
org.deeplearning4j.nn.graph.vertex.impl.StackVertex
StackVertex是对n个输入沿着dimension=0合并。合并之后新的input就能进入ff层、RNN层或CNN层进行参数共享和反向梯度计算。

使用StackVertex实现的GAN示例:
https://github.com/Gerry-Pan/pan-dl4j/#cgan%E7%A4%BA%E4%BE%8B

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值