向量空间的封闭性

向量空间封闭,是指:

 - 两个向量相加所得的向量仍然在该向量空间中
 - 实数和向量数乘所得的向量仍然在该向量空间中

即,假设\textbf{S}为向量的集合:

  • 如果\mathbf{\mathit{}a}\in \textbf{S}\textbf{b}\in \textbf{S},那么\textbf{a}+\textbf{b}\in \textbf{S}
  • 如果\mathbf{\mathit{}a}\in \textbf{S}\lambda \in \mathbb{R},那么\lambda \textbf{a}\in \textbf{S}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值