设都是集合,
是一个从集合
到集合
的映射变换
单射:若由任意的及
,可以推得
,那么就称
是单射。
满射:若对任意,存在
,使得
,那么就称
是满射。
双射:若既是单射、又是满射,那么就称
是双射。
集合对等:若、
是非空集合,并且存在双射
,那么就称
与
对等,记为
。规定
。
设都是集合,
是一个从集合
到集合
的映射变换
单射:若由任意的及
,可以推得
,那么就称
是单射。
满射:若对任意,存在
,使得
,那么就称
是满射。
双射:若既是单射、又是满射,那么就称
是双射。
集合对等:若、
是非空集合,并且存在双射
,那么就称
与
对等,记为
。规定
。