目标检测网络
文章平均质量分 95
胖虎记录学习
我很懒,还没有添加简介
展开
-
目标检测学习--yolo v5
yolo v5论文:没有下表是官网贴出的关于不同大小模型以及输入尺度对应的mAP、推理速度、参数数量以及理论计算量下图为yolov5s的网络结构,它是yolov5系列中深度最小、特征图宽度最小的网络::由Conv+BN+Leaky_relu激活函数组成;...原创 2022-08-29 16:32:37 · 2638 阅读 · 0 评论 -
目标检测学习--yolo v4
需要注意的是在SAT的反向传播的过程中,是不需要改变网络权值的。CBN:每次iteration中的BN数据是其之前n次数据和当前数据的和(对非当前batch统计的数据进行了补偿再参与计算),用该累加值对当前的batch进行Normalization,好处在于每个batch可以设置较小的size;使用k={1×1,5×5,9×9,13×13}的最大池化的方式,再将不同尺度的特征图进行Concat操作,采用SPP模块的方式,比单纯的使用k×k最大池化的方式,极大地增加感受野,显著的分离了最重要的上下文特征;原创 2022-08-24 09:45:25 · 598 阅读 · 1 评论 -
目标检测学习--yolov3
yolov3论文作者比较幽默,论文整体内容中创新点和技术分布较为零散,有兴趣的可以去看看原论文;yolov3是对于v1、v2的一种改进,相对v2主要的改进有:调整了网络结构;利用多尺度特征进行对象检测;对象分类用Logistic取代了softmax;在保持速度优势的前提下,提升了预测精度,尤其是加强了对小物体的识别能力。YOLO v3的整体结构如下图所示:主要亮点在于用3个尺度的特征图来进行对象检测,对检测小物体的效果有所提升。即在识别图片中各类目标的基础上,还需定位出识别对象的位置,并框出。...原创 2022-08-18 13:48:35 · 3248 阅读 · 1 评论 -
目标检测学习--YOLOv2
论文地址:《YOLO9000:Better,Faster,Stronger》在这篇论文中,作者首先在YOLOv1的基础上提出了改进的YOLOv2,然后提出了一种检测与分类联合训练方法,使用这种联合训练方法在COCO检测数据集和ImageNet分类数据集上训练出了YOLO9000模型,其可以检测超过9000多类物体;所以,这篇文章其实包含两个模型:YOLOv2和YOLO9000,不过后者是在前者基础上提出的,两者模型主体结构是一致的;YOLOv2相比YOLOv1做了很多方面的改进,这也使得YOLOv2的mAP原创 2022-07-02 15:15:18 · 1233 阅读 · 0 评论 -
目标检测学习--YoLov1
论文地址:《You Only Look Once: Unified, Real-Time Object Detection》官方代码地址:GitHub链接地址 目标检测是一件比较实际的且具有挑战性的计算机视觉任务,其可以看成图像分类与定位的结合,给定一张图片,目标检测系统要能够识别出图片的目标并给出其位置,由于图片中目标数是不定的,且要给出目标的精确位置,目标检测相比分类任务更复杂。对于一张图片有多个目标的目标检测任务主要有以下难点:(1). deformable parts models (DPM)利用滑原创 2022-06-21 14:45:29 · 2205 阅读 · 0 评论 -
目标检测回归损失函数总结
目标检测的预测框回归损失函数由Classificition Loss和Bounding Box Regeression Loss两部分构成,本文介绍Bounding Box Regeression Loss。L1 loss也称为平均绝对误差,即真实值和预测值差值的绝对值:设y-f(x)为横轴,MAE值为纵轴,函数图像如下:由图可知,L1损失函数对y-f(x)的导数为常数,在训练后期,即y与f(x)接近时,也即y-f(x)很小时,假设learning rate不变,损失函数会在稳定值附近波动,由于梯度的稳定,原创 2022-06-14 16:37:37 · 1019 阅读 · 0 评论 -
目标检测学习--FPN(特征金字塔网络)-解决多尺度检测问题
论文地址《Feature Pyramid Networks for Object Detection》深度神经网络学习到的特征中,浅层特征学到的是物理信息,比如物体的角点、边缘的细节信息,而深层特征学到的是语义信息,更加高维与抽象;目标检测包括分类和定位任务,对于分类任务来说,深层网络学到的特征可能更为重要,而对于定位任务来说,深层次和浅层次的特征同样重要;之前的目标检测算法,多数只采用深层特征来做预测,所含的细节信息比较粗略,即使采用了特征融合的方法,也一般是采用融合后的特征进行预测的;卷积网络可以得到不原创 2022-06-08 15:36:03 · 5915 阅读 · 0 评论 -
目标检测学习--Faster RCNN
论文地址《Faster R-CNN Towards Real-Time Object》Faster RCNN将特征提取(feature extraction),proposal提取,bounding box regression(Region Refine),classification都整合在了一个网络中,使得检测性能较RCNN、Fast RCNN进一步提高。如上图所示: Conv layers:Faster RCNN首先使用一组基础的conv+relu+pooling操作提取输入image的featur原创 2022-06-08 09:45:26 · 1549 阅读 · 0 评论 -
目标检测学习--Fast R-CNN
论文地址:《Fast R-CNN》重复操作:R-CNN中用CNN对每一个候选区域反复提取特征,而一张图片的2000个候选区域之间有大量重叠部分,这一设定造成特征提取操作浪费大量计算;步骤繁琐:R-CNN的训练先要fine tuning一个预训练的网络,然后针对每个类别都训练一个SVM分类器,最后还要用regressors对bounding-box进行回归,另外region proposals也要单独用selective search的方式获得;时间和内存消耗较大:R-CNN中目标分类与候选框的回归是独立的两原创 2022-06-06 15:32:02 · 315 阅读 · 0 评论 -
目标检测学习--RCNN
论文地址:《Rich feature hierarchies for accurate object detection and semantic segmentation》RCNN(Region CNN)是将CNN引入目标检测领域的开山之作,在当时取得了一些好的效果。 1. 候选区域生成:输入一张图像;使用Selective Search方法提取大约2k个候选区域;对每个候选区域的图像进行拉伸形变,使之成为固定大小的正方形图像;Selective Search算法流程使用一种过分割手段,将图像分割成小区域原创 2022-06-05 14:47:54 · 440 阅读 · 0 评论