tensorflow以及tflearn文档及案例

本文详细介绍使用TFLearn和TensorFlow进行IMDB电影评论情感分析的过程。从数据预处理到网络构建,再到训练模型,全面解析如何利用这些工具实现文本分类任务。通过实际案例展示TFLearn作为TensorFlow高级API的便捷性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

tflearn文档,比tensorflow更高一级的API: http://tflearn.org

tensorflow中文文档:http://www.tensorfly.cn/tfdoc/get_started/introduction.html

#-*-coding:utf-8-*-
from __future__ import division, print_function, absolute_import

import tflearn
from tflearn.data_utils import to_categorical, pad_sequences
from tflearn.datasets import imdb

# IMDB Dataset loading
train, test, _ = imdb.load_data(path='imdb.pkl', n_words=10000,
                                valid_portion=0.1)
trainX, trainY = train
testX, testY = test

# Data preprocessing
# Sequence padding
trainX = pad_sequences(trainX, maxlen=100, value=0.)
testX = pad_sequences(testX, maxlen=100, value=0.)
# print("trainX:",trainX)
# Converting labels to binary vectors
trainY = to_categorical(trainY,2)
testY = to_categorical(testY,2)
# print("trainY:",trainY)

# Network building
net = tflearn.input_data([None, 100])
# print("net1:",net)
# print(net.shape())
net = tflearn.embedding(net, input_dim=10000, output_dim=128)
# print("net2:",net)
# print(net.shape())
net = tflearn.lstm(net, 128, dropout=0.8)
net = tflearn.fully_connected(net, 2, activation='softmax')
net = tflearn.regression(net, optimizer='adam', learning_rate=0.001,
                         loss='categorical_crossentropy')

# Training
# model = tflearn.DNN(net, tensorboard_verbose=0)
# model.fit(trainX, trainY, validation_set=(testX, testY), show_metric=True,
#           batch_size=32)

 

# 工程内容 这个程序是基于tensorflowtflearn库实现部分RCNN功能。 # 开发环境 windows10 + python3.5 + tensorflow1.2 + tflearn + cv2 + scikit-learn # 数据集 采用17flowers据集, 官网下载:http://www.robots.ox.ac.uk/~vgg/data/flowers/17/ # 程序说明 1、setup.py---初始化路径 2、config.py---配置 3、tools.py---进度条和显示带框图像工具 4、train_alexnet.py---大数据集预训练Alexnet网络,140个epoch左右,bitch_size为64 5、preprocessing_RCNN.py---图像的处理(选择性搜索、数据存取等) 6、selectivesearch.py---选择性搜索源码 7、fine_tune_RCNN.py---小数据集微调Alexnet 8、RCNN_output.py---训练SVM并测试RCNN(测试的时候测试图片选择第7、16类中没有参与训练的,单朵的花效果好,因为训练用的都是单朵的) # 文件说明 1、train_list.txt---预训练数据,数据在17flowers文件夹中 2、fine_tune_list.txt---微调数据2flowers文件夹中 3、1.png---直接用选择性搜索的区域划分 4、2.png---通过RCNN后的区域划分 # 程序问题 1、由于数据集小的原因,在微调时候并没有像论文一样按一个bitch32个正样本,128个负样本输入,感觉正样本过少; 2、还没有懂最后是怎么给区域打分的,所有非极大值抑制集合canny算子没有进行,待续; 3、对选择的区域是直接进行缩放的; 4、由于数据集合论文采用不一样,但是微调和训练SVM时采用的IOU阈值一样,有待调参。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值