机器学习
文章平均质量分 73
Peter Pan 1231
结硬寨 打呆仗 WebChat JianLong1231
展开
-
机器学习项目实战(七) 机器学习预测股价
机器学习项目实战系列 机器学习预测股价目录机器学习项目实战系列 机器学习预测股价一、概述二、分析数据1.导入2.数据导入3.分析股票尾市数据4.构建模型5.测试模型6.展示预测结果一、概述根据上一年的数据预测股票市场的未来价格数据集:股票价格预测数据集https://www.kaggle.com/c/two-sigma-financial-news/data源代码:股票价格预测项目https://data-flair.training/bl...原创 2021-06-24 16:21:32 · 17940 阅读 · 19 评论 -
机器学习项目实战(六) MNIST数字分类
机器学习项目实战系列 MNIST数字分类目录机器学习项目实战系列 MNIST数字分类一、概述二、分析数据1.数据导入2.数据预处理3.构建模型4.训练模型5.生成GUI进行预测一、概述MNIST数字分类python项目使机器能够识别手写数字,该项目对于计算机视觉可能非常有用,这里我们将使用MNIST数据集使用卷积神经网络训练模型。数据集:MNIST数字识别数据集 https://drive.google.com/file/d/1hJiOlxctFH3u...原创 2021-06-24 14:22:21 · 2980 阅读 · 4 评论 -
机器学习项目实战(五) 住房价格预测
机器学习项目实战系列 住房价格预测目录机器学习项目实战系列 住房价格预测一、概述二、分析数据1.数据导入2.基础统计运算3.特征观察4.建立模型5.分析模型表现(1)学习曲线(2)复杂度曲线6.拟合模型7.预测销售价格一、概述数据集包含波士顿剩余区域的房价,房子的费用根据犯罪率,房间数量等各种因素而变化。房屋价格预测数据集 https://www.cs.toronto.edu/~delve/data/boston/bostonDetai...原创 2021-06-23 14:52:49 · 3697 阅读 · 4 评论 -
机器学习项目实战(四) 心脏病发作预测
机器学习项目实战系列 心脏病发作预测目录机器学习项目实战系列 心脏病发作预测一、概述二、使用数据集1.数据集Column2.导入数据3.查看唯一数据统计4.汇总统计5.分类汇总6.相关性矩阵 7.数据分布一、概述心脏病发作分类分析心脏病发作数据集 https://www.kaggle.com/rashikrahmanpritom/heart-attack-analysis-prediction-dataset二、使用数据集1.数据...原创 2021-06-22 17:14:11 · 3428 阅读 · 0 评论 -
机器学习项目实战(三) 贷款预测
机器学习项目实战系列 贷款预测一、概述贷款预测模型将对用户可以贷款多少进行分类。它基于用户的婚姻状况,教育程度,受抚养人数和就业情况,我们可以为此项目建立一个线性模型。贷款预测数据集 https://www.kaggle.com/altruistdelhite04/loan-prediction-problem-dataset二、实战1.查看数据2.深入数据 ...原创 2021-06-22 16:26:27 · 5367 阅读 · 0 评论 -
机器学习项目实战(二) Emojify
机器学习项目实战系列 Emojify一、概述Emojify对人的面部表情进行分类并将其映射为表情符号。我们将建立一个卷积神经网络来识别面部表情,然后将使用相应的表情符号或头像来映射这些情感。使用的数据集为facial expression recognition(FER2013 dataset),对表情情绪进行了分类0:angry 1:disgust 2:feat 3:happy 4:sad 5:surprise 6:naturalDownload Dataset...原创 2021-06-22 15:32:21 · 3270 阅读 · 8 评论 -
机器学习项目实战(一) 鸢尾花
机器学习项目实战系列 鸢尾花一、环境准备1.安装Python32.安装好anaconda3.安装好相应的库Numpy:用于 Python 的数值处理,最常用的一个库 PIL:一个简单的图像处理库 scikit-learn:包含多种机器学习算法 Kears 和 TensorFlow二、鸢尾花背景知识可以把这个Iris(鸢尾花)理解成为机器学习的helloworld花的四个属性分别是Sepal length--萼片长度 Sepal width--萼片...原创 2021-06-22 14:36:59 · 2106 阅读 · 0 评论 -
机器学习笔记 (第一周)
机器学习笔记 (第一周)目录机器学习笔记 (第一周)引言(Introduction)1.1 什么是机器学习,机器学习能做些什么事情1.2 机器学习是什么?1.3 监督学习1.4 无监督学习二、单变量线性回归(Linear Regression with One Variable)2.1 模型表示2.2 代价函数2.3 代价函数的直观理解I2.4 代价函数的直观理解II2.5 梯度下降2.6 梯度下降的直观理解2.7 梯度下降的线性回归引言.原创 2021-01-06 17:04:02 · 405 阅读 · 0 评论