自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(61)
  • 资源 (20)
  • 收藏
  • 关注

原创 《遥感大模型生产级实战:从数据到决策的端到端AI工程》系列第二部分:智慧农业精准监测与产量预测系统项目实战-农业视觉基础模型构建:Agri-MAE预训练实战

摘要: 本研究提出了一种农业专用的视觉基础模型Agri-MAE,通过自监督学习解决传统监督方法在智慧农业中的泛化性差、标注成本高和扩展性弱等问题。模型基于Sentinel-2多光谱遥感数据,结合地块感知掩码生成器和加权重建损失,优化了特征提取能力。实验采用分布式训练(DDP)和线性探测评估,验证了模型在作物分类等任务中的高效性。Agri-MAE为农业AI应用提供了可迁移的通用特征表示,显著降低了标注依赖,并为后续的微调与部署奠定了基础。

2025-10-25 17:21:20 17

原创 《遥感大模型生产级实战:从数据到决策的端到端AI工程》系列第五部分:技术融合、前沿与未来展望-文章33:前沿技术探索:神经符号AI与世界模型

本章将深入探讨两大前沿技术:神经符号AI 与 世界模型。神经符号AI旨在将深度学习的强大感知能力与符号逻辑的严谨推理能力相结合,为模型注入“常识”和“知识”。世界模型则更进一步,致力于学习环境本身的动态模型,理解其内在的因果规律,从而进行预测和反事实推理。本章将通过两个代码量巨大、逻辑完整的实战项目,手把手地教你如何构建一个知识增强的遥感分类器,以及如何开发一个简化的作物生长模拟世界模型。

2025-10-25 17:13:58 553

原创 《遥感大模型生产级实战:从数据到决策的端到端AI工程》系列第五部分:技术融合、前沿与未来展望-文章32:遥感大模型的伦理、安全与可解释性

文章将系统性地探讨三大核心议题:数据偏见与算法公平性,确保模型不会因地域、经济水平等差异而产生歧视性结果;地缘政治与数据安全,在数据主权和跨境流动日益敏感的今天,构建符合法规、安全可信的数据处理与模型服务架构;可解释AI(XAI),打开深度学习模型的“黑箱”,让模型的决策过程透明化、可追溯、可理解。

2025-10-25 16:32:15 925

原创 《遥感大模型生产级实战:从数据到决策的端到端AI工程》系列第五部分:技术融合、前沿与未来展望-文章31:大模型与传统GIS的深度协同

在前面的章节中,我们成功地构建了强大的AI模型(如FloodSwin)和MaaS(Model as a Service)平台,将它们部署在云端,通过API提供服务。然而,对于广大的GIS分析师、应急管理人员和领域专家来说,他们的日常工作环境是桌面GIS软件,如QGIS或ArcGIS。让他们离开熟悉的界面,去编写Python脚本、调用REST API,是一个巨大的学习成本和使用障碍。因此,将AI模型的能力无缝集成到桌面GIS中,是实现技术价值最大化的“最后一公里”。

2025-10-25 15:54:08 986

原创 《遥感大模型生产级实战:从数据到决策的端到端AI工程》系列第五部分:技术融合、前沿与未来展望-文章 30:跨项目技术迁移与模型即服务

本文深入探讨遥感大模型跨项目技术迁移的核心方法论与工程实践,以模型即服务(MaaS)架构为载体,实现三大生产级项目(智慧农业、城市洪涝、全球碳汇)的技术资产复用。通过Agri-MAE模型通用化改造、多模态特征提取服务封装、Kubernetes云原生部署等实战,构建统一遥感模型服务平台。内容涵盖模型抽象化设计、跨领域适配技术、API网关管理、自动化流水线集成等关键环节,提供从模型封装到生产级服务的端到端解决方案。

2025-10-25 15:29:58 515

原创 《遥感大模型生产级实战:从数据到决策的端到端AI工程》系列第四部分:全球尺度碳汇(森林)动态监测与量化系统实战-文章 29:项目三收尾:全球碳汇监测报告自动生成

本文介绍了构建一个自动化全球碳汇监测报告系统的完整技术方案。该系统采用模块化架构,包含四大核心组件:1)基于FastAPI的高性能后端服务;2)PostgreSQL+PostGIS空间数据库;3)利用GPT-4等LLM的智能报告生成器;4)基于MapboxGLJS的交互式WebGIS前端。系统实现了从原始数据到专业报告的全流程自动化,关键技术包括容器化部署、CI/CD流水线、PromptEngineering等。

2025-10-25 14:40:50 103

原创 《遥感大模型生产级实战:从数据到决策的端到端AI工程》系列第四部分:全球尺度碳汇(森林)动态监测与量化系统实战-文章 28:高性能计算:在全球尺度上训练和推理大模型

本文系统介绍了全球尺度遥感AI项目中的高性能计算(HPC)技术,围绕PB级数据和亿级参数模型两大核心挑战展开。文章从数据量级跃升、I/O瓶颈、显存限制等角度量化分析了HPC的必要性,详细比较了超算中心与云计算平台的架构差异和选型策略。重点讲解了数据并行、模型并行等分布式训练方法,提供了完整的Slurm作业脚本和PyTorch DDP实现方案。文章还深入探讨了混合精度训练、梯度累积等优化技术,并介绍了DeepSpeed ZeRO这一内存优化方案。

2025-10-25 14:15:25 77

原创 《遥感大模型生产级实战:从数据到决策的端到端AI工程》系列第四部分:全球尺度碳汇(森林)动态监测与量化系统实战-文章 27:地理智能实战:融合生态系统模型进行碳汇估算

本文提出了一种融合生态过程模型与图神经网络的地理智能方法,用于构建物理可信的碳通量预测模型。针对纯数据驱动模型存在的黑箱性、物理规律违背和泛化性差等问题,研究通过两种策略实现知识融合:将CASA/BIOME-BGC等生态系统模型输出作为GNN节点特征,或将其转化为损失函数约束。文章详细阐述了从数据预处理(整合ERA5气象、SoilGrids土壤、MODIS遥感和FLUXNET通量塔数据)、图构建(空间离散化为规则网格)、模型实现到验证评估的全流程技术方案,并通过SHAP等可解释性方法分析碳汇变化驱动因子。

2025-10-25 14:15:05 27

原创 《遥感大模型生产级实战:从数据到决策的端到端AI工程》系列第四部分:全球尺度碳汇(森林)动态监测与量化系统实战-文章 26:多模态融合:光学与LiDAR数据联合估算生物量

《多模态融合的森林生物量估算模型研究》摘要 本研究提出了一种融合Sentinel-2光学影像与GEDI星载LiDAR数据的深度学习模型,用于高精度森林生物量估算。通过设计双分支架构(CNN处理光谱信息、GNN处理三维结构)和交叉注意力融合模块,解决了传统方法成本高、范围小的局限性。研究实现了从数据预处理(超10000行代码)、模型训练(15000行脚本)到不确定性量化的完整技术路线,创新性地采用MCDropout方法评估预测置信度。

2025-10-25 14:14:44 58

原创 《遥感大模型生产级实战:从数据到决策的端到端AI工程》系列第四部分:全球尺度碳汇(森林)动态监测与量化系统实战-文章 25:生成式建模实战:修复云污染的时序数据

本文探讨了基于生成式AI的遥感影像云修复方法,提出了一种时序条件扩散模型来有效解决云污染问题。文章首先分析了传统云修复方法的局限性,如时序插值无法捕捉真实变化、同态滤波导致细节丢失等。然后详细介绍了扩散模型的原理和实现方法,包括前向/反向过程、损失函数设计以及U-Net架构。关键技术包括:1)利用前后无云影像作为条件信息;2)交叉注意力机制融合多时相数据;3)大规模合成训练数据增强器。实验表明,该模型在PSNR、SSIM等指标上显著优于传统方法,能有效提升后续森林监测任务的精度。

2025-10-25 14:14:24 40

原创 《遥感大模型生产级实战:从数据到决策的端到端AI工程》系列第四部分:全球尺度碳汇(森林)动态监测与量化系统实战-文章 24:超长序列时空建模:三十年森林变化追踪

本文提出了一种基于Mamba的状态空间模型(SpaMamba)用于处理超长时序遥感数据,以解决传统RNN/LSTM的梯度消失问题和Transformer的平方计算复杂度问题。文章首先分析了30年全球森林监测数据的价值与建模挑战,详细介绍了Mamba模型的选择机制和线性计算优势。随后构建了端到端的时空建模框架,包括数据预处理、模型架构设计和训练策略。通过两阶段训练(自监督预训练和监督微调),模型能够有效捕捉森林长期演变规律。

2025-10-25 14:13:58 37

原创 《遥感大模型生产级实战:从数据到决策的端到端AI工程》系列第四部分:全球尺度碳汇(森林)动态监测与量化系统实战-文章 23:跨传感器自监督预训练:构建统一的全球地表基础模型

本文提出了一种跨传感器的自监督视觉基础模型Scale-MAE,用于构建统一的全球地表观测系统。针对遥感领域多源数据"巴别塔"问题(如Landsat与Sentinel-2在光谱、分辨率等方面的差异),设计了双管齐下的解决方案:1)基于MAE框架的跨传感器重建任务,通过掩码建模迫使模型学习通用特征;2)跨传感器对比学习任务,增强模型对多源数据的对齐能力。创新性采用金字塔编码器架构和多模态输入适配器,支持处理不同分辨率、波段的卫星数据。

2025-10-25 14:13:39 13

原创 《遥感大模型生产级实战:从数据到决策的端到端AI工程》系列第四部分:全球尺度碳汇(森林)动态监测与量化系统实战-文章 22:项目三启动与全球长时序数据处理

我们将系统性地介绍支撑本项目所需的核心数据源,包括Landsat、MODIS、Sentinel、GEDI等,并详细剖析它们各自的特点、优势与局限性。我们将分步构建一个强大的、自动化的全球长时序数据处理流水线。这个流水线将涵盖:全球尺度数据的自动化下载与元数据解析;基于瓦片化技术的海量影像拼接与处理;超长时序数据的空间配准、时间对齐与一致性校正;以及最终构建一个结构化的、可供后续模型直接使用的全球森林长时序数据集。

2025-10-25 14:12:36 302

原创 《遥感大模型生产级实战:从数据到决策的端到端AI工程》系列第三部分:城市洪涝灾害应急响应与评估平台实战-文章 21:项目二收尾:应急响应平台构建与决策支持

本章将扮演“总工程师”的角色,将这些独立的模块组装成一个完整的、可扩展的、高可用的“数字孪生”应急响应平台。我们将首先从“工具箱”到“指挥台”的视角转变,阐述构建一个集成平台的必要性和核心价值。随后,我们将深入探讨并实战一个基于微服务架构的、生产级的平台设计方案,涵盖后端API、前端驾驶舱、数据库、消息队列等所有关键技术栈。

2025-10-20 19:24:29 40

原创 《遥感大模型生产级实战:从数据到决策的端到端AI工程》系列第三部分:城市洪涝灾害应急响应与评估平台实战-文章 20:自适应计算:无人机端实时灾情评估

本章将深入探讨并实战一个革命性的解决方案:自适应计算——在无人机机载的、资源受限的边缘计算平台上,实时运行AI模型,直接在空中完成灾情评估。我们将首先通过一个惊心动魄的“化工厂泄漏”案例,揭示传统无人机系统的“信息延迟”问题,并论证边缘智能的极端重要性。随后,我们将系统性地学习自适应计算的核心技术栈,包括边缘计算架构、模型压缩(量化、剪枝、知识蒸馏)、轻量化模型设计以及硬件加速。

2025-10-19 14:00:12 29

原创 《遥感大模型生产级实战:从数据到决策的端到端AI工程》系列第三部分:城市洪涝灾害应急响应与评估平台实战-文章 19:时空建模:灾害动态演化过程分

本章将系统性地引入并实战化时空建模这一前沿交叉学科,它融合了数据挖掘、机器学习、因果科学和地理信息科学。我们将首先通过一个震撼人心的城市洪涝72小时演进案例,揭示传统分析方法的局限性,并论证时空分析在理解“剧情”、诊断“病因”和预测“结局”方面的革命性价值。随后,我们将深入浅出地讲解时空建模的核心理论,包括时空数据表示、模式发现、因果推断和动态预测。

2025-10-19 13:00:21 170

原创 《遥感大模型生产级实战:从数据到决策的端到端AI工程》系列第三部分:城市洪涝灾害应急响应与评估平台实战-文章 18:地理智能实战:物理约束的洪水淹没模型

我们将深入浅出地讲解城市洪水的核心物理规律——圣维南方程组,并用工程师的语言而非数学家的语言,剖析其守恒定律的本质。本章的核心将是一个详尽的、超过40000行的生产级代码实战,我们将分步构建一个AI-物理混合模型:一个图神经网络(GNN)作为“智能修正器”,学习物理模型无法捕捉的复杂城市细节;一个简化的物理求解器作为“物理骨架”,保证预测结果的大致合理性。我们将提供从数据预处理、网格剖分、GNN构建、物理求解器实现、混合模型训练到端到端推演的完整代码。

2025-10-19 13:00:06 23

原创 《遥感大模型生产级实战:从数据到决策的端到端AI工程》系列第三部分:城市洪涝灾害应急响应与评估平台实战-文章 17:生成式建模实战:台风路径与淹没范围推演

我们将系统性地学习两大核心技术:用于时空序列预测的Transformer模型,以及用于条件图像生成的扩散模型。本章的核心将是一个详尽的、超过40000行的生产级代码实战,我们将分步构建一个两阶段的推演系统:第一阶段,使用一个基于Transformer的模型,根据初始气象条件,生成未来72小时台风路径的概率分布;第二阶段,使用一个时空条件扩散模型,以预测的路径和地理信息为条件,生成高分辨率的、动态的淹没范围序列。我们将提供从数据预处理、模型构建、训练、推演到可视化的完整代码,并最终集成一个可交互的Web应用。

2025-10-19 12:59:48 100

原创 《遥感大模型生产级实战:从数据到决策的端到端AI工程》系列第三部分:城市洪涝灾害应急响应与评估平台实战-文章 16:视觉-语言模型:开放词汇灾害目标识别

我们将首先通过一个震撼人心的救援案例,揭示传统目标检测的局限性,并论证开放词汇识别的极端重要性。随后,我们将深入剖析VLM的理论基石,从CLIP的对比学习到BLIP-2的Q-Former,让读者理解其“通用翻译官”的本质。本章的核心将是三个环环相扣的实战环节:首先,我们将从零开始,构建一个高质量的、图文对齐的灾害领域数据集;其次,我们将使用先进的参数高效微调技术,对预训练的通用VLM进行领域自适应,让它“懂行话”;最后,我们将集成SOTA的开放词汇检测器,构建一个端到端的、可交互的灾害目标识别系统。

2025-10-19 12:59:30 492

原创 《遥感大模型生产级实战:从数据到决策的端到端AI工程》系列第三部分:城市洪涝灾害应急响应与评估平台实战-文章 15:多模态融合实战:SAR-光学-OSM协同解译

我们将首先通过一个极具说服力的对比案例,揭示单一模态的局限性和多模态融合的巨大潜力。随后,我们将系统性地解析SAR、光学、OSM三种模态在洪涝场景下的物理特性、数据预处理方法和特征工程。本章的核心将是一个详尽的、生产级的深度学习模型设计与实现。我们将提出一个创新的“双流交叉注意力融合架构”,并使用PyTorch提供超过40000行的、带有详尽注释的完整代码,覆盖从数据加载、多分支特征提取、智能融合到端到端训练与评估的全过程。

2025-10-19 12:59:07 50

原创 《遥感大模型生产级实战:从数据到决策的端到端AI工程》系列第三部分:城市洪涝灾害应急响应与评估平台实战-文章 14:项目二启动与多源异构数据对齐

我们将系统性地梳理城市洪涝场景下的所有关键数据源,从天上的卫星(光学与SAR)、空中的无人机,到地面的物联网传感器和社交媒体信息流,深入剖析每种数据在洪涝响应中的独特价值、获取方式与内在局限性。本章的核心将是一个详尽的、生产级的数据对齐技术全景,我们将分步解决三大核心对齐难题:空间对齐(将所有数据投影到统一的地理坐标系)、时间对齐(处理不同采样频率的时间序列)以及最困难的语义对齐(将文本描述与物理观测相关联)。

2025-10-19 12:58:48 876

原创 《遥感大模型生产级实战:从数据到决策的端到端AI工程》系列第二部分:智慧农业精准监测与产量预测系统项目实战-文章 13:项目一收尾:系统集成、可视化与交付

本章将系统性地阐述如何将我们之前构建的作物分类、多模态融合、时空建模、生成式仿真、地理智能和边缘计算等所有技术模块,整合成一个完整的“智慧农业大脑”。我们将以生产级的视角,深入探讨现代软件架构(微服务)、通信协议、数据流设计、容器化、CI/CD、基础设施即代码等工程实践。本章的核心将是一个详尽的、端到端的系统集成实战,我们将提供超过30000行的、可直接部署的代码,涵盖从API网关、模型服务、数据管道到可视化仪表盘的完整后端服务,以及一个交互式的前端界面。

2025-10-18 20:33:32 45

原创 《遥感大模型生产级实战:从数据到决策的端到端AI工程》系列第二部分:智慧农业精准监测与产量预测系统项目实战-文章 12:自适应计算:模型压缩与边缘部署

本章将系统性地介绍“自适应计算”的全栈技术,从模型压缩到边缘部署,实现从“云端大脑”到“边缘神经”的跨越。我们将首先通过一个生动的生产级案例,揭示边缘计算的迫切需求。随后,我们将深入剖析四大核心模型压缩技术:剪枝、量化、知识蒸馏和低秩分解,并提供超过20000行的、带有详尽注释的PyTorch代码,手把手地教读者如何将一个庞大的Spatio-Temporal Swin Transformer模型“瘦身”成一个高效的学生模型。

2025-10-18 20:03:59 42

原创 《遥感大模型生产级实战:从数据到决策的端到端AI工程》系列第二部分:智慧农业精准监测与产量预测系统项目实战-文章 11:地理智能增强:融入农学知识提升决策合理性

知识和地理物理规则融入AI模型,使其不仅“知其然”,更“知其所以然”。我们将首先通过一个生动的生产级案例,揭示“无知”模型可能带来的荒谬决策,从而论证地理智能的必要性。随后,我们将系统地构建一个“农学知识库”,涵盖土壤、气候、地形等关键要素。本章的核心将是两种前沿的地理智能融合方法:图神经网络(GNN)和物理信息神经网络(PINN)。我们将提供超过20000行的、带有详尽注释的PyTorch代码,手把手地教读者如何将地块构建为图、如何将物理方程转化为损失函数。

2025-10-18 19:34:48 22

原创 《遥感大模型生产级实战:从数据到决策的端到端AI工程》系列第二部分:智慧农业精准监测与产量预测系统项目实战-文章 10:生成式建模:数据增强与病虫害场景仿真

我们将深入浅出地剖析扩散模型的核心原理,从直观的“雕塑家”类比到严谨的数学公式,让读者彻底理解其“从噪声中创造图像”的精妙机制。本章的核心将是一个详尽的、生产级的条件扩散模型架构设计与实现,我们将分步构建一个能够根据作物类型和病害类别生成逼真遥感影像的“AI画家”。我们将提供超过15000行的、带有详尽注释的PyTorch代码,涵盖从U-Net骨干、时间步嵌入、条件机制到完整的训练与推理流程。最后,我们将通过两个高级应用——数据增强和场景仿真,来验证模型的巨大价值。

2025-10-18 19:34:30 39

原创 《遥感大模型生产级实战:从数据到决策的端到端AI工程》系列第二部分:智慧农业精准监测与产量预测系统项目实战-文章 9:时空建模:从静态分类到动态长势监测

系统地梳理时空数据的基础知识、挑战以及经典的建模方法,并最终引出当前最先进的时空Transformer架构。本章的核心将是一个详尽的、基于Spatio-Temporal Swin Transformer的模型架构设计,我们将深入剖析其核心组件:时空块合并、时序位置编码以及革命性的多尺度时空窗口注意力机制。我们将提供完整的、生产级的PyTorch代码实现,并构建一个端到端的作物长势监测与异常检测项目。

2025-10-18 19:34:15 41

原创 《遥感大模型生产级实战:从数据到决策的端到端AI工程》系列第二部分:智慧农业精准监测与产量预测系统项目实战-文章 8:多模态融合:融合遥感与气象数据提升分类精度

将系统地梳理多模态融合的策略与挑战,并重点介绍当前在参数高效微调领域备受推崇的Adapter范式,阐述其如何成为连接预训练模型与下游任务的桥梁。本章的核心将是一个详尽的、基于Adapter的融合网络架构设计,我们将分步实现三个关键组件:加载预训练Agri-MAE的光学分支、设计用于处理时序气象数据的LSTM/Transformer编码器,以及实现跨模态信息交互的融合Adapter模块。最后,我们将探讨两种关键的训练策略(两阶段训练与端到端微调),并构建一个完整的、端到端的生产级项目。

2025-10-18 19:33:57 40

原创 《遥感大模型生产级实战:从数据到决策的端到端AI工程》系列第二部分:智慧农业精准监测与产量预测系统项目实战-文章 7:自监督预训练:构建农业专属的视觉基础模型

本章首先通过一个生动的生产级失败案例,深刻剖析了传统监督学习基线模型在泛化性、数据效率和可解释性上的根本性局限,从而论证了向无标签数据学习范式转变的必要性和紧迫性。随后,我们将深入探讨如何将经典的MAE模型进行“农业化”改造,重点解决两大核心挑战:设计能够感知农业地块结构的掩码策略,以及处理多光谱波段重建的特殊性。最后,我们将详细设计并实现Agri-MAE的完整模型架构,包括多光谱编码器、地块感知的掩码生成器和加权解码器,并提供大量可运行的PyTorch代码。

2025-10-18 19:33:39 27

原创 《遥感大模型生产级实战:从数据到决策的端到端AI工程》系列第二部分:智慧农业精准监测与产量预测系统项目实战-文章 6:项目启动与数据预处理流水线

本章将首先深入剖析智慧农业项目的业务需求、成功指标与技术选型,为整个项目设定清晰的航向。随后,我们将聚焦于项目中最基础也是最核心的环节——数据。我们将详细讲解如何构建一个高质量的、多模态的农业专题数据集,包括研究区的科学选择、Sentinel-2光学影像与ERA5气象再分析数据的时空对齐。最后,我们将深入探讨遥感数据清洗中的核心挑战——云检测与掩膜,以及如何通过时间序列插值与平滑技术,为模型训练生成干净、连续的时序数据。

2025-10-18 19:33:21 338

原创 《遥感大模型生产级实战:从数据到决策的端到端AI工程》系列第一部分:AI遥感工程师的基础设施与工具链-文章 5:深度学习核心与PyTorch生产级编程

本文将系统性地讲解如何使用PyTorch进行生产级编程,从项目结构化、配置管理、高效数据加载,到构建通用的训练框架、集成实验跟踪与模型版本控制,全方位地提升你的工程能力。我们将通过大量的代码实例,特别是结合智慧农业项目的背景,展示如何将一个简单的训练脚本,重构为一个能够处理TB级数据、支持分布式训练、易于迭代和部署的现代化深度学习项目。

2025-10-18 19:19:35 502

原创 《遥感大模型生产级实战:从数据到决策的端到端AI工程》系列第一部分:AI遥感工程师的基础设施与工具链-文章 4:传统遥感分析与机器学习基线

本章将系统性地介绍经典遥感分析工作流,从数据预处理到多维度特征工程,再到如何利用经典的机器学习模型(如随机森林、支持向量机)进行监督与非监督学习。我们将通过一个完整的“智慧农业作物分类”项目实战,展示如何利用我们之前构建的数据湖和工具链,从原始数据到最终的分析结果,构建一个性能可靠、可解释性强的基线系统。更重要的是,我们将深入剖析这种传统方法的局限性,从而为后续章节引入遥感大模型的必要性提供强有力的论证。

2025-10-18 19:19:18 487

原创 《遥感大模型生产级实战:从数据到决策的端到端AI工程》系列第一部分:AI遥感工程师的基础设施与工具链-文章 3:生产级数据工程:遥感数据湖的构建与管理

我们将详细设计一套生产级的数据湖分层架构,并深入探讨其背后的技术选型,文章的核心部分将通过三个完整的实战案例,展示如何使用工作流编排引擎Airflow,实现从Sentinel光学影像、ERA5气象数据到OpenStreetMap矢量数据的多源、自动化获取与ETL(抽取、转换、加载)过程。读者将亲手编写可运行的Python脚本和Airflow DAG,将原始数据转化为结构化、标准化的“数据资产”,最终为智慧农业项目构建一个专属的、可信赖的数据湖,为后续的大模型训练奠定坚实的数据基础。

2025-10-18 19:19:04 554

原创 《遥感大模型生产级实战:从数据到决策的端到端AI工程》系列第一部分:AI遥感工程师的基础设施与工具链-文章 2:生产级环境搭建:云原生遥感AI实验室

深入探讨为何云原生是现代AI生产的必然选择,并对国内主流云服务商(阿里云、腾讯云、华为云)进行深度对比分析,重点关注其技术生态与成本模型。随后,我们将聚焦于阿里云,精细化解析其计费策略与成本优化方案。在实践层面,我们将深入容器化技术的核心——Docker,手把手构建一个专为遥感AI定制的Docker镜像,并利用Docker Compose编排一个包含JupyterLab和对象存储的多服务开发环境。最后,我们将迈出容器编排的关键一步,入门Kubernetes,理解其核心概念,并在本地搭建一个K8s集群。

2025-10-18 19:18:47 681

原创 《遥感大模型生产级实战:从数据到决策的端到端AI工程》系列第一部分:AI遥感工程师的基础设施与工具链-文章 1:导论与AI遥感生产全流程概览

本章作为整个系列的开篇,旨在为读者建立一个从“学术研究”到“工业生产”的思维转变。我们将首先剖析传统遥感AI方法在落地应用中面临的“生产鸿沟”,阐明为何需要一套全新的、体系化的生产级实战方法论。随后,我们将详细拆解贯穿本系列的三大核心生产级项目——智慧农业、城市洪涝、全球碳汇,明确其业务需求、技术路线与交付标准。最后,我们将勾勒出AI遥感生产的端到端全流程,从数据、模型、部署到运维,为后续的深度学习与实践奠定坚实的认知基础。

2025-10-18 19:18:23 1226

原创 《遥感大模型时空建模技术系列2-时空依赖性建模理论与基础架构》

本文系统构建遥感大模型时空依赖性建模的理论框架,从数学基础到架构设计逐层解析。首先揭示时空数据的本质特性与建模挑战,提出“时空耦合依赖性”核心概念;其次深度剖析时空Transformer、动态图卷积等主流技术的数学原理与计算优化路径;最后设计模块化架构方案,通过全球农作物产量预测案例验证理论有效性。全文包含28个公式推导、15个算法实现及8个工程实践模块,为从业者提供从理论到生产的完整技术路径。

2025-10-17 20:32:06 450

原创 《遥感大模型时空建模技术系列1-遥感时空数据预处理全流程标准化指南》

本指南旨在为遥感时空建模领域的数据预处理工作提供一个全面、系统、可操作的标准化框架。遥感数据固有的异构性、多源性和不完整性,是制约时空大模型性能的关键瓶颈。本文严格遵循“输入决定输出”的原则,从数据获取、元数据管理、辐射与几何标准化、时序清洗修复,到最终的质量评估与自动化工作流构建,制定了详细的操作规程、量化指标和最佳实践。通过遵循本指南,从业者能够将原始、混乱的卫星数据,转化为高质量、分析就绪的时空数据集,从而为后续的模型训练与精准预测奠定坚实的基础,显著提升科研与工程项目的效率与可靠性。

2025-10-15 20:50:16 925

原创 站在巨人的肩膀上:利用timm和Hugging Face transformers快速构建遥感ViT应用

本文详细介绍两大PyTorch生态中的核心库:timm(PyTorch Image Models)和Hugging Face transformers。我们将通过丰富的实战案例,展示如何利用它们在几行代码内完成模型加载、数据预处理、训练、评估和部署,从而将开发效率提升一个数量级。本文旨在帮助您从繁琐的“造轮子”工作中解放出来,更专注于模型创新和业务逻辑本身。

2025-10-15 19:11:43 916

原创 从实验室到业务:遥感ViT模型的轻量化与部署实践

本文将系统性地解决这一难题,为您提供一套完整的ViT轻量化与部署解决方案。我们将深入探讨三大核心轻量化技术:知识蒸馏、模型剪枝和量化,并辅以PyTorch代码实现。随后,我们将讲解如何将PyTorch模型导出为通用的ONNX格式,并利用业界顶尖的推理引擎——NVIDIA TensorRT和Intel OpenVINO——来极致压榨硬件性能。最后,我们将通过实战案例,展示如何将优化后的模型封装成云端API服务(使用FastAPI和Docker)以及部署到边缘设备(如NVIDIA Jetson)。

2025-10-15 19:11:24 890

原创 洞悉模型之心:ViT在遥感影像中的可解释性分析

本文系统性地探讨如何对应用于遥感影像的ViT模型进行可解释性分析。我们将从ViT的核心机制——自注意力入手,详细讲解如何提取、理解和可视化注意力权重。我们将深入剖析Attention Rollout这一关键技术,以追踪信息在模型内部的流动路径。此外,本文还将介绍如何将经典的Grad-CAM方法适配到ViT架构上,并对比不同可解释性方法的异同。通过丰富的遥感案例和完整的PyTorch代码,本文将为您提供一套从理论到实践的完整工具箱,帮助您真正洞悉模型之心。

2025-10-14 19:32:55 668

原创 榨干性能:ViT+MAE在遥感任务中的训练技巧与超参数调优

本文将作为“遥感ViT实战宝典”系列的第四篇,聚焦于ViT+MAE在遥感任务中的高级训练技巧与自动化超参数调优。我们将超越常规的AdamW和余弦退火,深入探讨Lion等新型优化器、RandAugment等自动化数据增强策略、Stochastic Depth等高级正则化方法。更重要的是,本文将重点介绍如何使用Optuna等工具,将繁琐的“炼丹”过程转变为科学的实验,实现超参数的自动化搜索与优化。此外,我们还将讨论梯度裁剪、混合精度训练等保障训练稳定性和效率的关键技术。

2025-10-14 19:32:38 667

demo_mode.py

demo_mode

2025-10-05

mermaid-to-png.py

mermaid代码内容转为png图片

2025-09-29

gdal-3.11.1-cp313-cp313-win-amd64.whl

cp313 : cp 表示“CPython”,即 Python 的官方实现。 313 :该包是为 Python 3.13 版本构建的。win: 该包是为 Windows 操作系统构建的。amd64 : 该包是为 64 位计算机构建的。

2025-09-29

rasterio-1.4.3-cp313-cp313-win_amd64.whl

cp313 : cp 表示“CPython”,即 Python 的官方实现。 313 :该包是为 Python 3.13 版本构建的。win: 该包是为 Windows 操作系统构建的。amd64 : 该包是为 64 位计算机构建的。

2025-09-29

geopandas-1.1.1-py3-none-any.whl

cp313 : cp 表示“CPython”,即 Python 的官方实现。 313 :该包是为 Python 3.13 版本构建的。win: 该包是为 Windows 操作系统构建的。amd64 : 该包是为 64 位计算机构建的。

2025-09-29

shapely-2.1.1-cp313-cp313t-win_amd64.whl

cp313 : cp 表示“CPython”,即 Python 的官方实现。 313 :该包是为 Python 3.13 版本构建的。win: 该包是为 Windows 操作系统构建的。amd64 : 该包是为 64 位计算机构建的。

2025-09-29

fiona-1.10.1-cp313-cp313-win_amd64.whl

cp313 : cp 表示“CPython”,即 Python 的官方实现。 313 :该包是为 Python 3.13 版本构建的。win: 该包是为 Windows 操作系统构建的。amd64 : 该包是为 64 位计算机构建的。

2025-09-29

pyproj-3.7.2-cp313-cp313t-win_amd64.whl

cp313 : cp 表示“CPython”,即 Python 的官方实现。 313 :该包是为 Python 3.13 版本构建的。win: 该包是为 Windows 操作系统构建的。amd64 : 该包是为 64 位计算机构建的。

2025-09-29

jd-gui-0.3.3.windows反编译工具

1. Installation. No installation and no setup are required. 2. Description JD-GUI is a standalone graphical utility that displays Java source codes of ".class" files. You can browse the reconstructed source code with the JD-GUI for instant access to methods and fields. JD-GUI is free for non-commercial use. This means that JD-GUI shall not be included or embedded into commercial software products. Nevertheless, JD-GUI may be freely used for personal needs in a commercial or non-commercial environments. 3. How to use JD-GUI For example, to decompile "Object.class", you can : - execute the following command line : "jd-gui.exe Object.class". - select "Open File ..." in "File" menu and browse to "Object.class". - drag and drop "Object.class" onto "jd-gui". 4. Changes http://java.decompiler.free.fr/jd-gui/changes/ 5. Uninstallation 5.1 Windows: Delete "jd-gui.exe" and "jd-gui.cfg". 5.2 Linux: Delete "jd-gui" application file and "jd-gui.cfg". 5.3 OSX: Drag and drop "JD-GUI" application to the trash. 6. Network & Security JD-GUI includes a feature to inform you of the availability of new versions. It executes the HTTP GET request "http://java.decompiler.free.fr/jd-gui/ update/" without any parameters neither cookies to download update data. No personal information is transmitted. You can check network activities of JD-GUI with "tcpdump" for example ... If you decide to block network acces of JD-GUI, all its features remains operational, except the auto-update checking feature, of course.

2012-07-20

基于VB的BP神经网络算法演示程序

基于VB的BP神经网络算法演示程序,包括源代码和程序工程

2012-07-16

软件体系结构ACMESTUDIO软件工具

软件体系结构ACMESTUDIO软件工具

2013-04-03

AForge.NET Framework-2.2.4文档、源码和例子

•AForge.Imaging - library with image processing routines and filters; •AForge.Vision - computer vision library; •AForge.Neuro - neural networks computation library; •AForge.Genetic - evolution programming library; •AForge.Fuzzy - fuzzy computations library; •AForge.MachineLearning - machine learning library; •AForge.Robotics - library providing support of some robotics kits; •AForge.Video - set of libraries for video processing •etc.

2012-08-14

java实现神经网络BP算法

java实现的bp算法,可视化操作,详细的设置、导入导出数据与学习功能

2012-07-16

Ext4.1.0 API中文版V0.2 Beta(CHM版)

Ext4.1.0 API中文版V0.2 Beta(CHM版) 右键单击CHM文件的,选择“属性”,发现“常规”栏下多出几行字:“安全:此文件来自其他计算机,可能被阻止以帮助保护计算机”点击旁边的“解除锁定”即可解决

2012-09-04

exe4j_windows-x64

java生成exe工具,支持64位机器,安装需要jre环境

2012-06-20

proguard4.8最新混淆工具

proguard4.8最新混淆工具,很好用的工具

2012-07-20

java png透明处理方法大全

java png透明处理方法大全,很好用,解决图片透明等问题

2012-07-23

sld 详细教程中文版本

sld 详细教程中文版本 高分下的低分分享

2012-07-19

FileScanServiceImpl.java

1.扫描默认路径: 2.扫描自定义路径: 技术要点说明 1.文件扫描: –使用递归算法扫描目录及其子目录 –支持配置多种影像文件扩展名(.jpg, .png等) –从完整路径中提取文件名(不带扩展名)用于比对

2025-10-05

SchedulerConfig.java

1.扫描默认路径: 2.扫描自定义路径: 技术要点说明 1.文件扫描: –使用递归算法扫描目录及其子目录 –支持配置多种影像文件扩展名(.jpg, .png等) –从完整路径中提取文件名(不带扩展名)用于比对

2025-10-05

GridImgAdd.java

1.扫描默认路径: 2.扫描自定义路径: 技术要点说明 1.文件扫描: –使用递归算法扫描目录及其子目录 –支持配置多种影像文件扩展名(.jpg, .png等) –从完整路径中提取文件名(不带扩展名)用于比对

2025-10-05

GridImgAddMapper.java

1.扫描默认路径: 2.扫描自定义路径: 技术要点说明 1.文件扫描: –使用递归算法扫描目录及其子目录 –支持配置多种影像文件扩展名(.jpg, .png等) –从完整路径中提取文件名(不带扩展名)用于比对

2025-10-05

FileScanner.java

1.扫描默认路径: 2.扫描自定义路径: 技术要点说明 1.文件扫描: –使用递归算法扫描目录及其子目录 –支持配置多种影像文件扩展名(.jpg, .png等) –从完整路径中提取文件名(不带扩展名)用于比对

2025-10-05

FileScanScheduler.java

1.扫描默认路径: 2.扫描自定义路径: 技术要点说明 1.文件扫描: –使用递归算法扫描目录及其子目录 –支持配置多种影像文件扩展名(.jpg, .png等) –从完整路径中提取文件名(不带扩展名)用于比对

2025-10-05

FileScanController.java

1.扫描默认路径: 2.扫描自定义路径: 技术要点说明 1.文件扫描: –使用递归算法扫描目录及其子目录 –支持配置多种影像文件扩展名(.jpg, .png等) –从完整路径中提取文件名(不带扩展名)用于比对

2025-10-05

FileScanService.java

1.扫描默认路径: 2.扫描自定义路径: 技术要点说明 1.文件扫描: –使用递归算法扫描目录及其子目录 –支持配置多种影像文件扩展名(.jpg, .png等) –从完整路径中提取文件名(不带扩展名)用于比对

2025-10-05

FileScanResult.java

1.扫描默认路径: 2.扫描自定义路径: 技术要点说明 1.文件扫描: –使用递归算法扫描目录及其子目录 –支持配置多种影像文件扩展名(.jpg, .png等) –从完整路径中提取文件名(不带扩展名)用于比对

2025-10-05

RenderController.java

java实现三维场景输出图片

2025-10-05

DataLoader.java

java实现三维场景输出图片

2025-10-05

Model3D.java

java实现三维场景输出图片

2025-10-05

RenderService.java

java实现三维场景输出图片

2025-10-05

usgs-satellite-crawler.py

本项目实现了自动化爬取USGS(美国地质调查局)EarthExplorer平台上的卫星遥感数据,支持Landsat、Sentinel、MODIS等多种数据集。包含完整的搜索、下载、存储管理功能。

2025-10-05

esa-data-crawler.py

这是一个功能强大的Python工具,用于自动化爬取欧洲航天局(ESA) Copernicus开放数据门户的卫星数据。支持Sentinel-1、Sentinel-2、Sentinel-3和Sentinel-5P卫星数据的搜索、下载和管理。

2025-10-05

example-usage.py

这是一个功能强大的Python工具,用于自动化爬取欧洲航天局(ESA) Copernicus开放数据门户的卫星数据。支持Sentinel-1、Sentinel-2、Sentinel-3和Sentinel-5P卫星数据的搜索、下载和管理。

2025-10-05

enhanced-usgs-crawler.py

本项目实现了自动化爬取USGS(美国地质调查局)EarthExplorer平台上的卫星遥感数据,支持Landsat、Sentinel、MODIS等多种数据集。包含完整的搜索、下载、存储管理功能。

2025-10-05

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除