2018第二届中国移动金融发展大会

主题:《严“政”以待,共建移动金融新生态》

时间:4月24-25日

地点:北京.新世纪日航酒店

规模:500人+

主办方:移动支付网、北京移动金融产业联盟

协办方:北京网络信息安全技术创新产业联盟、第三方支付安全合作联盟

支持单位:中小银行互联网金融联盟、中国电子商务协会金融科技研究院、山东城商行合作联盟、中国云安全联盟C-CSA、深圳市大数据研究与应用协会

参与者:监管机构、卡组织、商业银行、电信运营商、行业协会、研究机构、检测认证机构、支付机构、互金机构、终端厂商、安全方案商、金融科技公司等。

大会背景

回首2017年,是中国移动金融产业政策监管最严格的一年。网联的上线,让第三方支付清算走向正规化;217、281号文的执行,更让整个支付产业走向合规;296号文的发布,对条码支付首次定性,从此迎来合规化发展;另一方面,央行对消费金融、现金贷等互联网金融产业的整治也让业界意识到,注重服务本质的金融科技创新才是发展未来。在2017年,中国移动支付产业问鼎全球,并向全球市场输出新技术和新模式,人工智能、人脸支付、无感支付、大数据等新兴移动金融技术,便捷了人们的日常生活,带来了产业新机遇新升级,但同时也面临着诸多挑战。与此同时,在移动金融日渐融入人们日常生活中时,合规化安全发展成为了社会热门话题。

展望2018年,在移动金融产业合规趋势之下,又有哪些值得关注的政策监管、技术创新以及发展趋势呢?藉此,移动支付网、北京移动金融产业联盟将于4月24-25日在北京·新世纪日航酒店举办2018第二届中国移动金融发展大会,诚邀各方探讨,强监管之下,移动金融的创新发展和未来。

大会看点

讨论议题

1、规范创新条码支付监管文件解读;

2、商业银行金融科技发展与监管要求;

3、国密算法在移动金融中的应用与思考;

4、对互联网可信身份认证两点问题的思考;

5、云闪付战略规划及模式创新;

6、格局的破与立,解读网联的现状与发展;

7、数据看金融,金融科技发展趋势报告;

8、无卡支付新机遇虚拟信用卡的创新与运营

9、从支付到金融,支付机构的产业升级;

10、新时代银行聚合支付发展新机遇;

11、畅想eSIM与移动金融结合的无限可能;

12、人工智能创新金融应用场景;

13、人脸识别在移动金融领域的应用分析;

14、无人零售背后的物联网支付解析;

15、区块链金融的案例分析和前景展望;

16、金融大数据发展现状及标准体系;

17、金融行业大数据应用痛点与解决之道;

18、商业银行大数据风控的思考与实践;

19、信用风险与金融大数据的共生共荣;

20、新金融、新技术破解反欺诈难题;

21、电信运营商大数据在金融风控中的应用;

22、金融大数据的安全分析;

23、公共交通领域移动支付应用情况;

24、高速公路+移动支付创新难点剖析;

25、交通无感支付创新应用

26、2017年度第四届金松奖颁奖典礼。

同期举办:移动金融安全分论坛、第三方支付安全闭门研讨会

门票:2800/人,3人及以上8折。

早鸟价:3月15日前报名付款2000/人,3人及以上8折。

含门票+自助午餐2天+茶歇3次+资料袋+PPT+会后结案报告+增值税专用/普通发票

演讲/展示赞助、门票请联系:

移动支付网姜瑞林手机/微信:18038063793

具体议程以大会专栏为准

往届回顾


有意参加请咨询:
http://www.51banhui.com/meet/101328.html
联系人:Dora
QQ:3501201954
手机:13515802613(微信号)


更多最新会议信息请登录蟠桃会会议平台
或关注微信公众号:canhuiqu
官方微博:蟠桃会议平台

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值