111

// 替换空格 /* 题目:请实现一个函数,把字符串中的每个空格替换成"%20". 例如,输入 "we are happy", 则输出 "we%20are%20happy." */ #i...

2018-07-01 22:13:02

阅读数 44

评论数 0

aaa

https://people.eecs.berkeley.edu/~pabbeel/cs287-fa15/

2018-04-21 10:46:45

阅读数 33

评论数 0

chapter3-有限状态自动机

chapter3:finite-state automation. 原书中第三版中的这一章还没写完,所以是看的图书馆借来的第二版,并结合宗成庆老师的统计自然语言处理来看的。 有限状态自动机 finite-state automation, FSA 前面一章节中的正则表达式只是一种用于文...

2018-04-12 09:19:24

阅读数 707

评论数 0

chapter2:正则表达式、文本标准化和编辑距离

Speech and Language Processing: An introduction to Natural Language Processing, Computational Linguistic, and Speech Recognition. Chapter 2 前言: 早期...

2018-04-12 09:18:26

阅读数 425

评论数 0

隐马尔可夫模型-standford

chapter6: 隐马尔科夫模型 standford tutorial, 可以说是看过的关于隐马尔科夫最好的教程了。要是看英文原版能和看中文一样easy该多好,可惜文化差异的情况下,即使是单词都认识,理解起来也会有点困难。对此,只能自己重新总结一下吧~ 可以说,斯坦福从未让人失望过,太赞了! ...

2018-04-12 09:17:38

阅读数 165

评论数 0

从生成模型到GDA再到GMM和EM算法

在学习生成模型之前,先学习了解下密度估计和高斯混合模型。为什么呢?因为后面的VAE\GANs模型都需要把训练样本,也就是输入的图像样本看作是一个复杂的、多维的分布。1. 知乎上关于图像频率的解释作者:耳东陈 链接:https://www.zhihu.com/question/20099543/a...

2018-03-21 17:44:10

阅读数 752

评论数 0

09. 训练神经网络4 --- 超参数调试,BN正则化再解析

1. 超参数调试方法 1) Try random values, and donnot use a grid 2) Coarse to fine 3) using an apporiate scale to pick hyperparameters 以对学习率αα\alpha的调试为例,需...

2018-03-15 14:25:02

阅读数 618

评论数 0

08. 训练神经网络3 -- 优化算法

前面一部分主要讲了神经网络在前向传播过程中对数据的处理,包括去均值预处理, 权重初始化, 在线性输出结果和激活函数之间批量归一化BN,以及进入下一层layer之前的随机失活. 那么这一部分将介绍在反向传播过程中对梯度下降的处理,也就是几种优化算法. 真的很佩服这些人…一个梯度下降,你之前可能想...

2018-03-15 14:24:40

阅读数 76

评论数 0

07. 训练神经网络2

数据预处理 归一化 Normalization PCA降维和白化 权重初始化 批量归一化 Batch Normalization 正则化 L1, L2正则化 Dropout and 反向 Dropout 属性分类:一个样本有多个标签 偏差和方差 bias and variance ...

2018-03-15 14:24:11

阅读数 66

评论数 0

06. 训练一个神经网络1-- epoch,batch_size,iteration

batch_size, iteration, epoch 1. 训练数据集的喂入:batch_size, iteration, epoch 1.1. 首先需要先了解下梯度下降 梯度下降是一种迭代优化算法,用于寻找最佳结果,loss的最小值。 迭代意味着我们需要多次得到结果才能得...

2018-03-15 14:23:10

阅读数 301

评论数 0

05. 神经网络的结构

生物神经元的粗略模型; 激活函数,其中ReLU是最佳推荐; 理解了神经网络是一个通用函数近似器,但是该性质与其广泛使用无太大关系。之所以使用神经网络,是因为它们对于实际问题中的函数的公式能够某种程度上做出“正确”假设。 讨论了更大网络总是更好的这一事实。然而更大容量的模型一定要和更强的正则化(比...

2018-03-15 14:22:43

阅读数 208

评论数 0

04. logistic回归-反向传播

logistic回归 反向传播 反向传播 这应该是神经网络里面最难的部分了吧~~为此除了CS231n的课,还结合了Coursera上Ng的deeplearning课程 logistic 回归 想直接看反向传播的视频的,但发现Ng的符号使用不太一样,所以先从头看点~顺便重新理解了...

2018-03-15 14:22:14

阅读数 843

评论数 0

03.最优化-求梯度

损失函数可视化 最优化 有限差值法求梯度 微分法求梯度:softmax为损失函数时推导 前面介绍了两部分: 1. 评分函数:将原始图像像素映射为分类评分值 2. 损失函数:根据评分函数和训练集图像数据实际分类的一致性,衡量某个具体参数集的质量好坏。 那么寻找到能使损失函数值最小化...

2018-03-15 14:21:41

阅读数 439

评论数 0

01.Python Numpy Tutorial

##cs231n notes:Python Numpy Tutorial import numpy as np #idctionary d = {'cat':(6,7),'dog':(7,5),'dog2':(8,3),'dog3':(9,10)} print(d['cat'][0]) c = s...

2018-03-15 14:21:03

阅读数 105

评论数 0

02.线性分类器-SVM-Softmax

线性分类器 评分函数 score function 线性分类器的理解和解释 损失函数 loss function 多类SVM softmax分类器 SVM和softmax比较 KNN分类器存在的不足: 分类器必须记住所有的训练数据并存储起来,以便未来测试数据比较,需要很大的空间 ...

2018-03-15 14:17:00

阅读数 72

评论数 0

cs231n笔记总结

cs231n的课程以及作业都完成的差不多了,后续的课程更多的涉及到卷积神经网络的各个子方向了,比如语义分割、目标检测、定位、可视化、迁移学习、模型压缩等等。assignment3有涉及到这些中的一部分,但需要深入了解的话还是得看论文了。所以在看论文前把之前已学的知识,笔记和作业代码一起做个整理。 ...

2018-03-15 14:09:27

阅读数 700

评论数 0

cs231n-LSTM_Captions

这篇文章是将cs231n中LSTM_Caption重新敲了一遍,所有的模块放在一起,以便于系统的理解整个过程。目的是读懂其中的每一行代码,即使是课程中已经帮你写好了的。 # As usual, a bit of setup from __future__ import print_funct...

2018-03-09 23:55:30

阅读数 718

评论数 0

最优化 Ooptimization

损失函数可视化 最优化 前面介绍了两部分: 1. 评分函数:将原始图像像素映射为分类评分值 2. 损失函数:根据评分函数和训练集图像数据实际分类的一致性,衡量某个具体参数集的质量好坏。 那么寻找到能使损失函数值最小化的参数的过程就是最优化 Optimization。 损失函数可...

2018-02-01 12:15:17

阅读数 155

评论数 0

线性分类器

线性分类器 评分函数 score function 线性分类器的理解和解释 损失函数 loss function 多类SVM softmax分类器 SVM和softmax比较 KNN分类器存在的不足: 分类器必须记住所有的训练数据并存储起来,以便未来测试数据比较,需要很大的空间 对...

2018-01-31 16:08:07

阅读数 329

评论数 0

C++ prime 构造函数和析构函数

数据部分的访问状态是私有的,不能像其他数据类型那样初始化。程序只能通过成员函数来访问数据成员,因此要设计合适的成员函数来将对象初始化。 为此,C++提供了一个特殊的成员函数—类构造函数。 构造函数的申明和定义: //constructor 构造函数,没有返回类型。原型位于类声明的共有部...

2018-01-23 18:27:14

阅读数 114

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭