IDENTIFYING AND NON-IDENTIFYING RELATIONSHIPS

===================================================================
简单翻译了一下(蓝色), 如果其中有错误 OR 不足之处, 完全不用客气, 请指出~
原文参考: http://blog.csdn.net/dbigbear/article/details/2116771
===================================================================

An identifying relationship means that the child table cannot be uniquely identified without the parent. For example, you have this situation in the intersection table used to resolve a many-to-many relationship where the intersecting table's Primary Key is a composite of the left and right (parents) table's Primary Keys.


identifying关系意思是: 如果没有父表, 子表无法独立定义, 举个例子: 有这么个情况,你建立了一个关系表, 用于解决多对多的关系, 而且这张关系表的主键是由左表和右表(父表)的主键复合组成 .

Example... 
Account (AccountID, AccountNum, AccountTypeID) 
PersonAccount (AccountID, PersonID, Balance)   
Person(PersonID, Name)  

The Account to PersonAccount relationship and the Person to PersonAccount relationship are identifying because the child row (PersonAccount) cannot exist without having been defined in the parent (Account or Person). In other words: there is no personaccount when there is no Person or when there is no Account.

Account 和 PersonAccount 的关系, 以及 Person 和 PersonAccount 的关系, 都是identifying关系, 因为(Account or Person)中未定义的数据不可能在PersonAccount中存在.换句话说: 如果没有Person或者没有Account,  就不会有personaccount .

A non-identifying relationship is one where the child can be identified independently of the parent ( Account - AccountType)

non-identifying关系: 字表可以独立定义, 与父表无关 .

Example... 
Account( AccountID, AccountNum, AccountTypeID ) 
AccountType( AccountTypeID, Code, Name, Description )

The relationship between Account and AccountType is non-identifying because each AccountType can be identified without having to exist in the parent table.

Account 和 AccountType之间的关系是non-identifying关系, 每一条定义在AccountType中数据不需要必须存在父表中 .
 
 
 
### RT-DETR Model for Small Object Detection Implementation and Optimization The RT-DETR (Real-Time Deformable Transformer Detector) model is designed to address challenges specific to detecting smaller objects within images or video frames. This model leverages advanced techniques like deformable transformers which enhance feature extraction from complex scenes, particularly beneficial when dealing with small-scale targets[^1]. For implementing an RT-DETR model focused on improving detection rates of tiny objects: #### Data Augmentation Techniques To improve the robustness of training data specifically targeting small objects, various augmentation methods are employed including scaling down larger instances into miniature versions during preprocessing stages. Additionally, cutout operations that randomly mask out regions containing large foreground elements help focus more attention towards less prominent features. ```python import albumentations as A transform = A.Compose([ A.RandomResizedCrop(height=640, width=640, scale=(0.8, 1.0)), A.Cutout(num_holes=8, max_h_size=32, max_w_size=32), ]) ``` #### Optimizing Network Architecture Adjustments made at architectural level include increasing receptive field sizes through dilated convolutions while maintaining computational efficiency by reducing channel dimensions where appropriate. Such modifications allow deeper penetration across spatial hierarchies thus capturing finer details necessary for identifying minute structures accurately. #### Loss Function Customization Custom loss functions tailored toward penalizing false negatives associated with hard-to-detect items ensure better recall metrics even under challenging conditions. Focal losses adjusted according to size distribution patterns observed within dataset annotations contribute significantly here. ```python class SizeAwareFocalLoss(nn.Module): def __init__(self, alpha=None, gamma=2., reduction='mean'): super(SizeAwareFocalLoss, self).__init__() def forward(self, inputs, targets, area_weights): BCE_loss = F.binary_cross_entropy_with_logits(inputs, targets, reduce=False) pt = torch.exp(-BCE_loss) focal_loss = ((1 - pt)**gamma * BCE_loss).mean() weighted_focal_loss = focal_loss * area_weights return weighted_focal_loss.mean() if self.reduction == 'mean' else weighted_focal_loss.sum() ``` #### Post-processing Refinements Post-process steps involve applying non-maximum suppression thresholds tuned lower than usual settings so as not to discard valid detections prematurely due solely based upon overlap criteria alone but rather consider confidence scores alongside geometric relationships between bounding boxes.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值