leetcode题记:Climbing Stairs

本文探讨了经典的爬楼梯问题,给出了两种JAVA实现方案:递归法和动态规划填表法,并对比了它们的时间复杂度及优缺点。

编程语言:JAVA
题目描述:


You are climbing a stair case. It takes n steps to reach to the top.

Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top?

Note: Given n will be a positive integer.

Example 1:

Input: 2
Output: 2
Explanation: There are two ways to climb to the top.
1. 1 step + 1 step
2. 2 steps
Example 2:

Input: 3
Output: 3
Explanation: There are three ways to climb to the top.
1. 1 step + 1 step + 1 step
2. 1 step + 2 steps
3. 2 steps + 1 step

提交反馈:


45 / 45 test cases passed.
Status: Accepted
Runtime: 2 ms
Submitted: 0 minutes ago
You are here! 
Your runtime beats 100.00 % of java submissions

解题思路:

递归法,n级台阶共S(n)中方法,S(n)=S(n-1)+S(n-2),
这个递归公式的理解为,当爬到n-1级台阶时候,到n级只有一种方法,即一步跨上去;
当爬到n-2级台阶的时候,直接到n级只有一种方法,两补一次跨上去(一步+一步这种方法会到达n-1级台阶,与S(n-1)重复)。
当然这种递归方法时间复杂度比较高,很容易超时。
最后参考别人的博客用动态规划填表的思路做完这道题,时间复杂度O(n),
设置了三个变量,空间复杂度也很低。可以说是很好的解决方案了。

提交后显示:Submission Result: Time Limit Exceeded

递归法代码:

class Solution {
    public int climbStairs(int n) {
        if(n == 1){
            return 1;
        }
        if(n == 2){
            return 2;
        }
        return climbStairs(n-1) + climbStairs(n-2);
    }
}

提交后显示:Submission Result: Time Limit Exceeded

动态规划填表法代码

class Solution {
    public int climbStairs(int n) {

        if(n==1){
            return 1;
        }
        if(n==2){
            return 2;
        }
        int i = 3;
        int n_1 = 1;
        int n_2 = 2;
        while(i < n){
            int tmp = n_1;
            n_1 = n_2;
            n_2 = tmp+n_2;

            i += 1;
        }
        return n_1 + n_2;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值