高维稀疏特征的时候,lr 的效果会比 gbdt 好
高维稀疏特征的时候,lr 的效果会比 gbdt 好,为什么?
这个问题我也是思考了好久,在平时的项目中也遇到了不少 case,确实高维稀疏特征的时候,使用 gbdt 很容易过拟合。
但是还是不知道为啥,后来深入思考了一下模型的特点,发现了一些有趣的地方。
假设有1w 个样本, y类别0和1,100维特征,其中10个样本都是类别1,而特征 f1的值为0,1,且刚好这10个样本的 f1特征值都为1,其余
转载
2018-04-12 10:56:24 ·
7450 阅读 ·
1 评论