动态规划入门-矩阵取数

这篇博客介绍了如何运用动态规划解决矩阵取数的问题,从左上角到右下角,每次只能向右或向下移动,目标是最大化路径上的数字总和。解题思路包括理解局部最优解如何构成整体最优解,以及如何通过状态转移方程确定每个格子的最佳路径选择。
摘要由CSDN通过智能技术生成

对应一个矩阵(不妨设是一个正方形的),我们需要从左上角走到右下角,每一个格子都有自己的数字,每一次只能走右边一格或者下方的一个格子,试求我们到达终点后可以得到的最大值。

输入

第1行:N,N为矩阵的大小。(2 <= N <= 500)
第2 - N + 1行:每行N个数,中间用空格隔开,对应格子中奖励的价值。(1 <= N[i] <= 10000)

输出

输出能够获得的最大价值。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值