数据说明
数据名称:中国省市气候风险指数
时间跨度:1993-2023
数据来源:各年中国气候变化蓝皮书
数据范围:省级数据962个样本,31个省份;地级市数据6950个样本,227个地级市。
数据说明
每组CPRI数据包含四个分项指数和一个总指数,涵盖1993年至2023年期间。LTD(极端低温日数)、HTD(极端高温日数)、ERD(极端降雨日数)、EDD(极端干旱日数)是四个子指数,分别代表一个国家/地区一年中极端低温日数、极端高温日数、极端降雨日数和极端干旱日数。这些指数使用下面解释的方法标准化,然后用于构建一般CPRI,它是指一个国家/地区的气候物理风险的总体程度。
测量方法
(1)数据收集
原始气象数据来自NOAA(美国国家海洋和大气管理局)
(2)数据处理过程
第一步:对样本中有大量缺失的数据进行删除
第二步:计算1973年1月1日至1992年12月31日期间每个指标的历史分布
第三步:计算1993年至2023年每个站点的极端天数事件的类型
第四步:计算区域层面的年度极端天气天数
第五步:指数的计算
参考文献
[1]World Meteorological Organization(WMO), State of the global climate 2023,
[2] J. Rising, M. Tedesco, F. Piontek, et al., The missing risks of climate change, Nature 610 (2022) 643–651,
[3] K. Guo, Y. Li, Y. Zhang, Q. Ji, W. Zhao, How are climate risk shocks connected to agricultural markets? J. Commod.Mark. 32 (2023) 100367,
测量方法
LTD(极端低温日数)、HTD(极端高温日数)、ERD(极端降雨日数)、EDD(极端干旱日数)是四个子指数,分别代表一个国家/地区一年中极端低温日数、极端高温日数、极端降雨日数和极端干旱日数。这些指数进行标准化用于构建一般CPRI(气候风险指数),它是指一个国家/地区的气候物理风险的总体程度。 具体指标为Year、Province、City、LTD、HTD、ERD、EED、Climate Physical Risk Index (CPRI)
数据指标
- 本数据所含指标和部分数据如下:
省级部分数据
地级市部分数据
2.数据描述
每组CPRI数据包含四个分项指数和一个总指数,涵盖1993年至2023年期间。LTD(极端低温日数)、HTD(极端高温日数)、ERD(极端降雨日数)、EDD(极端干旱日数)是四个子指数,分别代表一个国家/地区一年中极端低温日数、极端高温日数、极端降雨日数和极端干旱日数。这些指数使用下面解释的方法标准化,然后用于构建一般CPRI,它是指一个国家/地区的气候物理风险的总体程度。
3.数据处理
(1)数据收集
原始气象数据来自NOAA(美国国家海洋和大气管理局)
(2)数据处理过程
第一步:对样本中有大量缺失的数据进行删除
第二步:计算1973年1月1日至1992年12月31日期间每个指标的历史分布
第三步:计算1993年至2023年每个站点的极端天数事件的类型
第四步:计算区域层面的年度极端天气天数
第五步:指数的计算
文献案例
摘要:极端气候事件频发对全球社会造成了严重影响。因此,与气候变化相关的风险被认为是风险因素的新来源而不断地收到关注。为了探究这种新风险的社会经济影响,系统地衡量世界各地的风险对于研究人员和政策制定者来说是至关重要的。根据气象站的日常观测,为170个国家构建了气候风险指数(CPRI)数据集,特别关注四种极端天气事件:极端低温(ERD)、极端高温(HTD)、极端降雨(ERD)、极端干旱(EDD)。还构建了每个国家的气候物理风险综合风险指数,涵盖了1993年到2023年期间。
参考文献
[1] World Meteorological Organization (WMO), State of the global climate 2023
[2] J. Rising, M. Tedesco, F. Piontek, et al., The missing risks of climate change, Nature 610 (2022) 643–651,
[3] K. Guo, Y. Li, Y. Zhang, Q. Ji, W. Zhao, How are climate risk shocks connected to agricultural markets? J. Commod.Mark. 32 (2023) 100367
[4] Y. Zhou, S. Wu, Z. Liu, et al., The asymmetric effects of climate risk on higher-moment connectedness among carbon,energy and metals markets, Nat. Commun. 14 (2023) 7157
[5] S. Dietz, A. Bowen, C. Dixon, et al., Climate value at risk’ of global financial assets, Nat. Clim. Change 6 (2016)676–679
[6] D. Zhang, Y. Wu, Q. Ji, K. Guo, B. Lucey, Climate impacts on the loan quality of Chinese regional commercial banks,J. Int. Money Financ. 140 (2024) 102975
[7] I. Shala, B. Schumacher, The impact of natural disasters on banks’ impairment flow–Evidence from Germany, J. Clim.Financ. 6 (2024) 100031
[8] Y. Ma, Z. Liu, D. Ma, et al., A news-based climate policy uncertainty index for China, Sci. Data 10 (2023) 881
[9] S.O. Lee, N.C. Mark, J. Nauerz, J. Rawls, Z. Wei, Global temperature shocks and real exchange rates, J. Clim. Financ. 1(2022) 100004
[10] Y. Shen, X. Sun, Q. Ji, D. Zhang, Climate events matter in the global natural gas market, Energy Econ. 125 (2023)106887
[11] K. Guo, Q. Ji, D. Zhang, Climate physical risk index (CPRI), figshare, Dataset (2024)
【下载→
方式一(推荐):主页个人 简介
经管数据库-CSDN博客
方式二:数据下载地址汇总-CSDN博客