1.排序算法的介绍:
排序也称排序算法(Sort Algorithm),排序是将一组数据,依指定的顺序进行排列的过程
2.排序的分类:
-
内部排序:
指将需要处理的所有数据都加载到**内部存储器(内存)**中进行排序。 -
外部排序法:
数据量过大,无法全部加载到内存中,需要借助**外部存储(文件等)**进行排序。 -
常见的排序算法分类(见右图):
3.算法的时间复杂度
度量一个程序(算法)执行时间的两种方法
- 事后统计的方法
这种方法可行, 但是有两个问题:一是要想对设计的算法的运行性能进行评测,需要实际运行该程序;
二是所得时间的统计量依赖于计算机的硬件、软件等环境因素, 这种方式,要在同一台计算机的相同状态下运行,才能比较那个算法速度更快。
- 事前估算的方法
通过分析某个算法的时间复杂度来判断哪个算法更优
4.时间频度
基本介绍
时间频度:一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度或时间频度。记为 T(n)。[举例说明]
举例说明-基本案例
比如计算 1-100 所有数字之和, 我们设计两种算法
举例说明-忽略常数项
结论:
- 随着 n 值变大,5n^2+7n 和 3n^2 + 2n ,执行曲线重合, 说明 这种情况下, 5 和 3 可以忽略。
- 而 n^3+5n 和 6n^3+4n ,执行曲线分离,说明多少次方式关键
时间复杂度
-
一般情况下,算法中的基本操作语句的重复执行次数是问题规模 n 的某个函数,用 T(n)表示,若有某个辅助函数 f(n),使得当 n 趋近于无穷大时,T(n) / f(n) 的极限值为不等于零的常数,则称 f(n)是 T(n)的同数量级函数。
记作 T(n)=O( f(n) ),称O( f(n) ) 为算法的渐进时间复杂度,简称时间复杂度。 -
T(n) 不同,但时间复杂度可能相同。 如:T(n)=n²+7n+6 与 T(n)=3n²+2n+2 它们的 T(n) 不同,但时间复杂
度相同,都为 O(n²)。 -
计算时间复杂度的方法:
1,用常数 1 代替运行时间中的所有加法常数 T(n)=n²+7n+6 => T(n)=n²+7n+1
2,修改后的运行次数函数中,只保留最高阶项 T(n)=n²+7n+1 => T(n) = n²
3,去除最高阶项的系数 T(n) = n² => T(n) = n² => O(n²)
常见的时间复杂度
- 常数阶 O(1)
- 对数阶 O(log2n)
- 线性阶 O(n)
- 线性对数阶 O(nlog2n
- 平方阶 O(n^2)
- 立方阶 O(n^3)
- k 次方阶 O(n^k)
- 指数阶 O(2^n)
常见的时间复杂度对应的图:
说明:
-
常见的算法时间复杂度由小到大依次为:Ο(1)<Ο(log2n)<Ο(n)<Ο(nlog2n)<Ο(n2)<Ο(n3)< Ο(nk) <Ο(2n) ,随着问题规模 n 的不断增大,上述时间复杂度不断增大,算法的执行效率越低
-
从图中可见,我们应该尽可能避免使用指数阶的算法
常数阶 O(1)
对数阶 O(log2n)
线性阶 O(n)
线性对数阶 O(nlogN)
平方阶 O(n²)
立方阶 O(n³)、K 次方阶 O(n^k)
说明:参考上面的 O(n²) 去理解就好了,O(n³)相当于三层 n 循环,其它的类似
平均时间复杂度和最坏时间复杂度
-
平均时间复杂度是指所有可能的输入实例均以等概率出现的情况下,该算法的运行时间。
-
最坏情况下的时间复杂度称最坏时间复杂度。一般讨论的时间复杂度均是最坏情况下的时间复杂度。这样做的原因是:最坏情况下的时间复杂度是算法在任何输入实例上运行时间的界限,这就保证了算法的运行时间不会
比最坏情况更长。 -
平均时间复杂度和最坏时间复杂度是否一致,和算法有关(如图:)。
4.算法的空间复杂度简介
基本介绍
-
类似于时间复杂度的讨论,一个算法的空间复杂度(Space Complexity)定义为该算法所耗费的存储空间,它也是问题规模 n 的函数。
-
空间复杂度(Space Complexity)是对一个算法在运行过程中临时占用存储空间大小的量度。有的算法需要占用的临时工作单元数与解决问题的规模 n 有关,它随着 n 的增大而增大,当 n 较大时,将占用较多的存储单元,例
如快速排序和归并排序算法, 基数排序就属于这种情况 -
在做算法分析时,主要讨论的是时间复杂度。从用户使用体验上看,更看重的程序执行的速度。一些缓存产品(redis, memcache)和算法(基数排序)本质就是用空间换时间