排序算法简介与时间空间复杂度

1.排序算法的介绍:

排序也称排序算法(Sort Algorithm),排序是将一组数据,依指定的顺序进行排列的过程

2.排序的分类:

  1. 内部排序:
    指将需要处理的所有数据都加载到**内部存储器(内存)**中进行排序。

  2. 外部排序法:
    数据量过大,无法全部加载到内存中,需要借助**外部存储(文件等)**进行排序。

  3. 常见的排序算法分类(见右图):

在这里插入图片描述

3.算法的时间复杂度

度量一个程序(算法)执行时间的两种方法

  1. 事后统计的方法

这种方法可行, 但是有两个问题:一是要想对设计的算法的运行性能进行评测,需要实际运行该程序;
二是所得时间的统计量依赖于计算机的硬件、软件等环境因素, 这种方式,要在同一台计算机的相同状态下运行,才能比较那个算法速度更快。

  1. 事前估算的方法
    通过分析某个算法的时间复杂度来判断哪个算法更优

4.时间频度

基本介绍
时间频度:一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度或时间频度。记为 T(n)。[举例说明]

举例说明-基本案例
比如计算 1-100 所有数字之和, 我们设计两种算法

在这里插入图片描述

举例说明-忽略常数项
在这里插入图片描述

结论:

  1. 随着 n 值变大,5n^2+7n 和 3n^2 + 2n ,执行曲线重合, 说明 这种情况下, 5 和 3 可以忽略。
  2. 而 n^3+5n 和 6n^3+4n ,执行曲线分离,说明多少次方式关键

时间复杂度

  1. 一般情况下,算法中的基本操作语句的重复执行次数是问题规模 n 的某个函数,用 T(n)表示,若有某个辅助函数 f(n),使得当 n 趋近于无穷大时,T(n) / f(n) 的极限值为不等于零的常数,则称 f(n)是 T(n)的同数量级函数。
    记作 T(n)=O( f(n) ),称O( f(n) ) 为算法的渐进时间复杂度,简称时间复杂度。

  2. T(n) 不同,但时间复杂度可能相同。 如:T(n)=n²+7n+6 与 T(n)=3n²+2n+2 它们的 T(n) 不同,但时间复杂
    度相同,都为 O(n²)。

  3. 计算时间复杂度的方法:

    1,用常数 1 代替运行时间中的所有加法常数 T(n)=n²+7n+6 => T(n)=n²+7n+1

    2,修改后的运行次数函数中,只保留最高阶项 T(n)=n²+7n+1 => T(n) = n²

    3,去除最高阶项的系数 T(n) = n² => T(n) = n² => O(n²)

常见的时间复杂度

  1. 常数阶 O(1)
  2. 对数阶 O(log2n)
  3. 线性阶 O(n)
  4. 线性对数阶 O(nlog2n
  5. 平方阶 O(n^2)
  6. 立方阶 O(n^3)
  7. k 次方阶 O(n^k)
  8. 指数阶 O(2^n)

常见的时间复杂度对应的图:

在这里插入图片描述

说明:

  1. 常见的算法时间复杂度由小到大依次为:Ο(1)<Ο(log2n)<Ο(n)<Ο(nlog2n)<Ο(n2)<Ο(n3)< Ο(nk) <Ο(2n) ,随着问题规模 n 的不断增大,上述时间复杂度不断增大,算法的执行效率越低

  2. 从图中可见,我们应该尽可能避免使用指数阶的算法

常数阶 O(1)

在这里插入图片描述

对数阶 O(log2n)

在这里插入图片描述

线性阶 O(n)

在这里插入图片描述

线性对数阶 O(nlogN)

在这里插入图片描述

平方阶 O(n²)

在这里插入图片描述

立方阶 O(n³)、K 次方阶 O(n^k)

说明:参考上面的 O(n²) 去理解就好了,O(n³)相当于三层 n 循环,其它的类似

平均时间复杂度和最坏时间复杂度

  1. 平均时间复杂度是指所有可能的输入实例均以等概率出现的情况下,该算法的运行时间。

  2. 最坏情况下的时间复杂度称最坏时间复杂度。一般讨论的时间复杂度均是最坏情况下的时间复杂度。这样做的原因是:最坏情况下的时间复杂度是算法在任何输入实例上运行时间的界限,这就保证了算法的运行时间不会
    比最坏情况更长。

  3. 平均时间复杂度和最坏时间复杂度是否一致,和算法有关(如图:)。

在这里插入图片描述

4.算法的空间复杂度简介

基本介绍
  1. 类似于时间复杂度的讨论,一个算法的空间复杂度(Space Complexity)定义为该算法所耗费的存储空间,它也是问题规模 n 的函数。

  2. 空间复杂度(Space Complexity)是对一个算法在运行过程中临时占用存储空间大小的量度。有的算法需要占用的临时工作单元数与解决问题的规模 n 有关,它随着 n 的增大而增大,当 n 较大时,将占用较多的存储单元,例
    如快速排序和归并排序算法, 基数排序就属于这种情况

  3. 在做算法分析时,主要讨论的是时间复杂度。从用户使用体验上看,更看重的程序执行的速度。一些缓存产品(redis, memcache)和算法(基数排序)本质就是用空间换时间

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值