剑指 Offer 16. 数值的整数次方
问题描述
实现 pow(x, n) ,即计算 x 的 n 次幂函数(即,xn)。不得使用库函数,同时不需要考虑大数问题。
示例 1:
输入:x = 2.00000, n = 10
输出:1024.00000示例 2:
输入:x = 2.10000, n = 3
输出:9.26100示例 3:
输入:x = 2.00000, n = -2
输出:0.25000
解释:2-2 = 1/22 = 1/4 = 0.25提示:
-100.0 < x < 100.0
-231 <= n <= 231-1
-104 <= xn <= 104
解题思路
1.这道题乍一看比较简单。但是有很多边界值需要处理。一开始马上想到的思路如下:
pow(x,n) = x*pow(x,n-1)
public double myPow(double x, int n) {
if(n==0 || x==1) return 1;
if(n>0) return pow(x,n);
return 1/pow(x,-n);
}
public double pow(double x,int n){
double res =0 ;
if(n==0) return 1;
if(n>0){
res = x*pow(x,n-1);
}
return res;
}
但是这种解法首先无法通过:0.00001 2147483647 这样的用例。会栈溢出。
2.然后考虑到 2的32次方,实际上等于2的16次方乘以2的16次方,即n为偶数时:pow(x,n) = pow(x,n>>1)*pow(x,n>>1)。n为奇数时,pow(x,n) = pow(x,n>>1)*pow(x,n>>1)*x。
这样可以提高效率,主要是由于:计算次数和计算量大幅减少。
class Solution {
public double myPow(double x, int n) {
if(n==0 || x==1) return 1;
if(n>0) return pow(x,n);
return 1/pow(x,-n);
}
public double pow(double x,int n){
double res =0 ;
if(n==0) return 1;
if((n&1)==1) res = pow(x*x,n>>1)*x;
else res = pow(x*x,n>>1);
return res;
}
}
并在对2取模判断奇偶时,使用&(位与运算),效率是使用%运算符的4倍。但是一定要加括号。否则由于优先级问题会报错。
其次是把/2改为>>1(右移运算),也进一步提高了效率。
但是这种解法,虽然充分提高了效率,但是任然无法通过用例:2.00000 -2147483648
是由于,直接将负数n取相反数之后,2147483648 会超出int型范围。
3.解决负数相反数大于int范围的情况,有两种方式。
第一种是将数值设置为long,就可以不受限制。
另一种即把pow(x,n)改为1/(x*pow(x,-m-1))
Java解法
解法一:
class Solution {
public double myPow(double x, int n) {
long b = n;
double res = 1.0;
if(b < 0) {
x = 1 / x;
b = -b;
}
while(b > 0) {
if((b & 1) == 1) res *= x;
x *= x;
b >>= 1;
}
return res;
}
}
解法二:
class Solution {
public double myPow(double x, int n) {
if(n==0 || x==1) return 1;
if(n>0) return pow(x,n);
return 1/(x*pow(x,-n-1));
}
public double pow(double x,int n){
double res =0 ;
if(n==0) return 1;
if((n&1)==1) res = pow(x*x,n>>1)*x;
else res = pow(x*x,n>>1);
return res;
}
}