Android架构设计演变史

原文链接:【译】Android应用架构

天外飞仙

Android开发生态圈的节奏非常之快。每周都会有新的工具诞生,类库的更新,博客的发表以及技术探讨。如果你外出度假一个月,当你回来的时候可能已经发布了新版本的Support Library或者Play Services

曾经架构

追溯到2012年我们的代码库使用的是基本结构,那个时候我们没有使用任何第三方网络类库,而且AsyncTask也是我们的好朋友。当时的架构可以大致表示为下图。
基本架构图

MV模式

交互步骤:

  1. View Layer(视图层)职责是处理并将数据展示在UI上。
  2. Data Layer(数据层)负责从REST API或者持久数据存储区检索和存储数据。
  3. APIProvider提供了一些方法,使Activity和Fragment能够很容易的实现与REST API的数据交互。这些方法使用URLConnection和AsyncTask在一个单独的线程内执行网络请求,然后通过回调将结果返回给Activity。
  4. CacheProvider 所包含的方法负责从SharedPreferences和SQLite数据库检索和存储数据。同样使用回调的方式,将结果传回Activity。

存在问题:

  1. 使用这种结构,最主要的问题在于View Layer持有太多的职责。
  2. 如果继续添加复杂的业务逻辑,这种架构就会陷入众所周知的Callback Hell(回调地狱,多层嵌套的回调)。

模式总结:

  1. Activitty和Fragment变得非常庞大并且难以维护。
  2. 太多的回调嵌套意味着丑陋的代码结构而且不易读懂和理解。后期修改痛苦。
  3. 单元测试变得非常有挑战性,逻辑扎推,比较艰难。

RxJava驱动的新型架构

响应式编程:

  1. 一个数据流是一个按时间排序的即将发生的事件(Ongoing events ordered in time)的序列。如一个某种类型的值事件,一个错误事件和一个完成事件。监听跟点击事件一样的数据流,并做出相应的反应。
  2. 监听这个事件流的过程叫做订阅,我们定义的函数叫做观察者,而事件流就可以叫做被观察者。
  3. 在常用的响应式库中,每个事件流都会附有一些函数,例如 map, filter, scan等,当你调用这其中的一个方法时,比如clickStream.map(f),它会返回基于点击事件流的一个新事件流。它不会对原来的点击事件流做任何的修改。这种特性叫做不可变性(immutability),而且它可以和响应式事件流搭配在一起使用,就像豆浆和油条一样完美的搭配。(几乎)一切都可以成为一个事件流,这就是Rx的准则(mantra)。

简而言之:

RxJava允许通过异步流的方式处理数据,并且提供了很多操作符,你可以将这些操作符作用于流上从而实现转换,过滤或者合并数据等操作。新型的架构可以大致表示为下图。
新型架构图

交互步骤:

  1. Activity和Fragment要做的就是展示已经准备好的数据而不需要再进行转换了。
  2. DataManager是整个架构中的大脑。它广泛的使用了RxJava的操作符用来合并,过滤和转换从帮助类中返回的数据。
  3. Helper classes(图标中的第三列)有着非常特殊的职责以及简洁的实现方式。对数据crud。
  4. Event Bus(事件总线)允许我们在Data Layer中发送事件,以便View Layer中的多个组件都能够订阅到这些事件。如登录状态变化。

架构优势:

  1. RxJava的Observable和操作符避免了嵌套回调的出现。
  2. DataManager接管了以前View Layer的部分职责。
  3. 将代码从Activity和Fragment转移到了DataManager和帮助类中,就意味着使写单元测试变得更简单。
  4. 明确的职责分离和DataManager作为唯一与Data Layer进行交互的点,使这个架构变得Test-Friendly。

存在问题:

  1. 对于庞大和复杂的项目来讲,DataManager会变得非常的臃肿和难以维护。
  2. 尽管View Layer诸如Activity和Fragment等组件变得更轻量,它们仍然要处理大量的逻辑,如管理RxJava的订阅,解析错误等方面。

MVP模式

简而言之:

MVP 模式将 Controller 改名为 Presenter,同时改变了通信方向。
MVP架构图

交互步骤:

  1. 各部分之间的通信,都是双向的。
  2. View 与 Model 不发生联系,都通过 Presenter 传递。
  3. View 非常薄,不部署任何业务逻辑,称为”被动视图”(Passive View),即没有任何主动性,而 Presenter非常厚,所有逻辑都部署在那里。

架构优势:

  1. Activity和Fragment变得非常轻量。他们唯一的职责就是建立/更新UI和处理用户事件。现在我们通过模拟View Layer可以很容易的编写出单元测试。
  2. 如果DataManager变得臃肿,我们可以通过转移一些代码到Presenter来缓解这个问题。

存在问题:

  1. 当代码库变得非常庞大和复杂时,单一的DataManager依然是一个问题。

MVVM模式

简而言之:

MVVM 模式将 Presenter 改名为 ViewModel,基本上与 MVP 模式完全一致。
MVVM架构图

交互步骤:

  1. 只ViewModel 和 Model 间的通信是双向的。
  2. View 与 Model 不发生联系,都通过 ViewModel传递。
  3. View 非常薄,不部署任何业务逻辑,称为”被动视图”(Passive View),即没有任何主动性,而ViewModel非常厚,所有逻辑都部署在那里。

架构优势:

  1. 它采用双向绑定(data-binding):View的变动,自动反映在 ViewModel。
  2. ViewModel作为View的数据映射,通常View上有什么属性,ViewModel上也会存在相应的一个属性,这两个属性通过事件实现了双向的绑定,Data Binding Library 替我们完成了这样的绑定过程。

饭后小茶

  1. 值得一提的是它们并不是一个完美的架构。事实上,不要天真的认为这是一个独特且完美的方案,能够解决你所有的问题。Android生态系统将保持快速发展的步伐,我们必须继续探索。不断地阅读和尝试,这样我们才能找到更好的办法来继续构建优秀的Android应用程序。
  2. 最后感谢所有对 “Android架构设计演变史”提供资料的作者们,谢谢你们的辛勤付出,么么哒!
1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
应用背景为变电站电力巡检,基于YOLO v4算法模型对常见电力巡检目标进行检测,并充分利用Ascend310提供的DVPP等硬件支持能力来完成流媒体的传输、处理等任务,并对系统性能做出一定的优化。.zip深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值