Re: 使用WebStart发布RCP(绝对好用)

Eclipse RCP 开发体验
直接用SWT当然累,可以考虑用Jface和jface databinding开发一个Model/View的框架阿。

框架开发,当然是件辛苦的事情。不过,随后的开发就轻松多了。
并且Model和View是分离的,测试也相当的好作。EclipseRCP提供了很多现成的东西可以复用,比如可折叠的Section就是个不错的东东。并且由于合理的模块划分,使得界面的交互变更也很容易得到满足。至少,目前我看不出效率低在那里.学习曲线也并不高,看看已有的代码,只要几天就可以自主开发功能了。

EclipseRCP是开源的,翻开代码看看,Eclipse的模块划分还是不错的,只需要花上一两天的功夫,就可以实现不需要人干预的自动更新。俺们现在就是这样的,只要有新版本,就会自动下载。

RCP的控件已经相当丰富,而且在继续增加中,3.3增加了日期时间控件,如果早出来一点,俺们也用它了。
内容概要:本文详细介绍了一个基于Java和Vue的迁移学习与少样本图像分类系统的设计与实现,涵盖项目背景、目标、技术架构、核心算法、前后端代码实现、数据库设计、部署方案及应用领域。系统通过融合迁移学习与少样本学习技术,解决实际场景中样本稀缺、标注成本高、模型泛化能力差等问题,支持数据增强、预训练模型微调、原型网络(ProtoNet)等算法,并实现前后端分离、模块化设计、可视化监控与自动化工作流。项目提供完整的代码示例、API接口规范、数据库表结构及GUI界面,具备高扩展性、安全性和易用性,适用于医疗、工业、农业等多个领域。; 适合人群:具备一定Java、Vue和深度学习基础的研发人员、AI算法工程师、计算机相关专业学生及从事智能图像分析的科研人员。; 使用场景及目标:①在样本极少的场景下实现高精度图像分类,如医疗影像、工业缺陷检测;②构建可扩展、可视化的AI训练与推理平台;③学习如何将Python深度学习模型与Java后端集成,掌握前后端分离的AI系统开发流程;④了解迁移学习、少样本学习在实际工程中的落地方法。; 阅读建议:建议结合文档中的代码示例与流程图,搭建本地开发环境进行实践,重点关注前后端交互逻辑、Python模型服务调用机制及数据库设计,同时可基于项目结构扩展联邦学习、多模态融合等高级功能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值