误差反向传播算法——BP算法

[color=green]BP网结构图[/color][img]http://dl.iteye.com/upload/attachment/436174/026c08bb-d89c-33a4-a12f-274cc3f6a662.png[/img]

[color=green]学习规则[/color]
[list=1]
[*]开始
[*]连接权值及阈值的初始化
给各连接权{ wkj}、{ vji }及阈值{γj}、{θk }赋予(-1,+1)间的随机值。
[*]学习模式对提供给网络
随机选取一组模式对Zk = (z1k z2k…….zIk),Dk = (d1k d2k …….dKk) 提供给网络。
[*]计算中间层各单元的输入、输出
[img]http://dl.iteye.com/upload/attachment/436183/601117ea-4174-3154-86be-9f96c7e6518f.png[/img]
[*]计算输出层各单元的输入、输出
[img]http://dl.iteye.com/upload/attachment/436185/4d3de1cf-dceb-3a6f-a8db-6220cd8e59fd.png[/img]
[*]计算输出层各单元的一般化误差
δok =(dk-ok)ok(1-ok)
[*]计算中间层各单元的一般化误差
[img]http://dl.iteye.com/upload/attachment/436187/99ec76b9-3521-3c4a-8d16-b6a1afdf8817.png[/img]
[*]调整中间层至输出层之间的连接权值,
及输出层各单元的阈值
wkj ( n + 1) = wkj (n) + ηδokyj
θk (n+1 ) =θk (n) -ηδok
[*]调整输入层至中间层之间的连接权值,及中间层各单元的阈值
vji (n + 1) = vji (n ) +ηδyjzi
γj (n + 1) =γj (n ) –ηδyj
[*]随机选取下一个学习模式对提供给网络,返回到第3)步,直到全部M个模式训练完
[*]更新学习次数,返回到第3)步,直到规定的学习次数N完成
[*]结束
[/list]



public class BP {

/**
* @param args
*/

static double[] objectPattern={0.757874015748031,1};
static double[] finalOutput=new double[2];
double [][] initInput={{1.08333333333333,1.58333333333333,2.08333333333333},{1.33333333333333,1.83333333333333,2.33333333333333}};
int inputNum=3,middleNum=10,outputNum=1;
double [][] v=new double [middleNum][inputNum];
double [] w =new double [middleNum];
double [] r=new double[middleNum];//中间层阈值
double [] y=new double[middleNum];//中间层输出值
static double q=0;//输出层输出值
double e=Math.random()*2-1;//输出层阈值
double a=0.1;//权调节系数
double b=0.1;//阈调节系数
static int count=1;
boolean [] allLearned=new boolean[2];

public static void main(String[] args) {
// TODO Auto-generated method stub
BP bp=new BP();
bp.init();

while(count<100000){
bp.calculate();
}
for(int i=0;i<objectPattern.length;i++){
System.out.print("初始,模式"+i+"="+objectPattern[i]+" ");
}
System.out.println();
for(int i=0;i<finalOutput.length;i++){
System.out.print("学习结果,模式"+i+"="+finalOutput[i]+" ");
}
}

private void init() {
// TODO Auto-generated method stub
for(int i=0;i<inputNum;i++)
for(int j=0;j<middleNum;j++){
v[j][i]=Math.random()*2-1;
w[j]=Math.random()*2-1;
r[j]=Math.random()*2-1;
}
}

private void calculate(){
while(!allLearned[0] || !allLearned[1]){
this.learn((int) (Math.random()*2));
}
count++;
allLearned[0]=false;
allLearned[1]=false;
}

private void learn(int start){
if(start==0){
allLearned[0]=true;
}
if(start==1){
allLearned[1]=true;
}
double[] inputOfThisTime=initInput[start];
double objectOfThisTime=objectPattern[start];
double errorOfOutput=0;//输出层各单元误差
double [] errorOfMiddle=new double[middleNum];//中间层各单元误差
double temp=0;
for(int j=0;j<v.length;j++){
for(int i=0;i<v[0].length;i++ ){
temp+=v[j][i]*inputOfThisTime[i];
}
y[j]=1/(1+Math.exp((-1)*(temp-r[j])));
}
temp=0;
for(int i =0;i<w.length;i++){
temp+=w[i]*y[i];
}
finalOutput[start]=1/(1+Math.exp((-1)*(temp-e)));
errorOfOutput=(objectOfThisTime-finalOutput[start])*finalOutput[start]*(1-finalOutput[start]);
for(int i=0;i<middleNum;i++){
errorOfMiddle[i]=(errorOfOutput*w[i])*y[i]*(1-y[i]);
}
e=e-b*errorOfOutput;
for(int i=0;i<w.length;i++){
w[i]=w[i]+a*errorOfOutput*y[i];
r[i]=r[i]-b*errorOfMiddle[i];
}
for(int j=0;j<v.length;j++)
for(int i=0;i<v[0].length;i++ ){
v[j][i]=v[j][i]+a*errorOfMiddle[j]*inputOfThisTime[i];
}

}

}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
反向传播算法(Backpropagation)是一种用于训练神经网络的常见优化算法。它通过计算损失函数相对于每个参数的梯度,并使用梯度下降来更新参数。下面我将给出反向传播算法的公式推导及示例代码。 1. 反向传播算法公式推导: 首先,定义神经网络的损失函数为L,该函数是由网络输出和真实标签之间的差异计算得出。假设神经网络有多个隐藏,每个隐藏的参数为W和b。 1.1 前向传播: 首先,我们通过前向传播计算每一输出值。假设输入为x,第l输出为a[l],则有: a = x z[l] = W[l] * a[l-1] + b[l] a[l] = g(z[l]) 其中,g()是激活函数。 1.2 反向传播: 接下来,我们需要计算损失函数相对于每个参数的梯度,然后使用梯度下降更新参数。假设我们有L神经网络,则有以下公式: 输出的梯度: dz[L] = dL / da[L] * g'(z[L]) 隐藏的梯度: dz[l] = (W[l+1]的转置 * dz[l+1]) * g'(z[l]) 参数梯度: dW[l] = dz[l] * a[l-1的转置] db[l] = dz[l] 更新参数: W[l] = W[l] - learning_rate * dW[l] b[l] = b[l] - learning_rate * db[l] 其中,dL / da[L]是损失函数对输出输出的导数,g'()是激活函数的导数。 2. 反向传播算法示例代码: 下面是一个使用反向传播算法进行训练的示例代码: ```python # 假设网络有三个隐藏 hidden_layers = [10, 20, 30] output_size = 2 # 初始化参数 parameters = {} layers_dims = [input_size] + hidden_layers + [output_size] L = len(layers_dims) - 1 for l in range(1, L + 1): parameters['W' + str(l)] = np.random.randn(layers_dims[l], layers_dims[l-1]) * 0.01 parameters['b' + str(l)] = np.zeros((layers_dims[l], 1)) # 前向传播 def forward_propagation(X, parameters): caches = [] A = X for l in range(1, L): Z = np.dot(parameters['W' + str(l)], A) + parameters['b' + str(l)] A = sigmoid(Z) cache = (Z, A) caches.append(cache) Z = np.dot(parameters['W' + str(L)], A) + parameters['b' + str(L)] AL = softmax(Z) cache = (Z, AL) caches.append(cache) return AL, caches # 反向传播 def backward_propagation(AL, Y, caches): grads = {} dZ = AL - Y m = AL.shape[1] grads['dW' + str(L)] = 1/m * np.dot(dZ, caches[-1][1].T) grads['db' + str(L)] = 1/m * np.sum(dZ, axis=1, keepdims=True) for l in reversed(range(1, L)): dA_prev = np.dot(parameters['W' + str(l+1)].T, dZ) dZ = dA_prev * sigmoid_derivative(caches[l-1][0]) grads['dW' + str(l)] = 1/m * np.dot(dZ, caches[l-1][1].T) grads['db' + str(l)] = 1/m * np.sum(dZ, axis=1, keepdims=True) return grads # 参数更新 def update_parameters(parameters, grads, learning_rate): for l in range(1, L+1): parameters['W' + str(l)] -= learning_rate * grads['dW' + str(l)] parameters['b' + str(l)] -= learning_rate * grads['db' + str(l)] return parameters # 训练模型 def train_model(X, Y, learning_rate, num_iterations): for i in range(num_iterations): AL, caches = forward_propagation(X, parameters) cost = compute_cost(AL, Y) grads = backward_propagation(AL, Y, caches) parameters = update_parameters(parameters, grads, learning_rate) if i % 100 == 0: print("Cost after iteration {}: {}".format(i, cost)) return parameters # 使用示例 parameters = train_model(X_train, Y_train, learning_rate=0.01, num_iterations=1000) ``` 这是一个简单的反向传播算法示例代码,其中的sigmoid()、softmax()、sigmoid_derivative()和compute_cost()函数需要根据具体情况自行实现。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值