实际上就是一个:梯度下降反向传播更新
如果熟知高数和懂最优化的梯度下降理论,可以直接跳到 四
在我们开始DL的研究之前,需要把ANN—人工神经元网络以及bp算法做一个简单解释。
输入层/输入神经元,输出层/输出神经元,隐层/隐层神经元,权值,偏置,激活函数
接下来我们需要知道ANN是怎么训练的,假设ANN网络已经搭建好了,在所有应用问题中(不管是网络结构,训练手段如何变化)我们的目标是不会变的,那就是网络的权值和偏置最终都变成一个最好的值,这个值可以让我们由输入可以得到理想的输出,于是问题就变成了y=f(x,w,b)(x是输入,w是权值,b为偏置,所有这些量都可以有多个,比如多个x1,x2,x3……最后f()就好比我们的网络它一定可以用一个函数来表示,我们不需要知道f(x)具体是怎样的函数,从小我们就认为只要是函数就一定要是可表示的,像f(x)=sin(x)一样,但是请摈弃这样的错误观念,我们只需要知道一系列的w和b决定了一个函数f(x),这个函数让我们由输入可以计算出合理的y
最后的目标就变成了尝试不同的w,b值,使得最后的y=f(x)无限接近我们希望得到的值t
但是这个问题依然很复杂,我们把它简化一下,让误差(y-t)^2的值尽可能的小。于是原先的问题化为了C(w,b)=(f(x,w,b)-t)^2取到一个尽可能小的值。这个问题不是一个困难的问题,不论函数如何复杂,如果C降低到了一个无法再降低的值,那么就取到了最小值(假设我们不考虑局部最小的情况)
如何下降?数学告诉我们对于一个多变量的函数f(a,b,c,d,……)而言,我们可以求得一个向量,它称作该函数的梯度,要注意的是,梯度是一个方向向量,它表示这个函数在该点变化率最大的方向(这个定理不详细解释了,可以在高等数学教材上找到)于是C(w,b)的变化量ΔC就可以表示成
是该点上的微小变化,我们可以随意指定这些微小变化,只需要保证ΔC<0就可以了,但是为了更快的下降,我们为何不选在梯度方向上做变化呢?
即可。这个公式表示误差C在沿着w的负梯度方向(下降最快的方向)走 η 步
ok,到这里,似乎所有的问题都解决了,让我们重新整理一下思绪,我们将问题转化了很多步:
网络权值偏置更新问题 ==> f(x,w,b)的结果逼近t ==> C(w,b)=(f(x,w,b)-t)^2取极小值问题 ==> C(w,b)按梯度下降问题 ==>取到极小值,网络达到最优
千万别忘了一点!!推导基于一个前提:我们已经提前知道了当前点的梯度。然而事实并非如此!!
这个问题困扰了NN研究者多年,1969年M.Minsky和S.Papert所著的《感知机》一书出版,它对单层神经网络进行了深入分析,并且从数学上证明了这种网络功能有限,甚至不能解决象"异或"这样的简单逻辑运算问题。同时,他们还发现有许多模式是不能用单层网络训练的,而对于多层网络则没有行之有效的低复杂度算法,最后他们甚至认为神经元网络无法处理非线性问题。然而于1974年,Paul Werbos首次给出了如何训练一般网络的学习算法—back propagation。这个算法可以高效的计算每一次迭